These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 844939)

  • 21. Alkylation of a ribonuclease from Streptomyces erythreus with iodoacetate and iodoacetamide.
    Ohgi K; Watanabe H; Emman K; Yoshida N; Irie M
    J Biochem; 1981 Jul; 90(1):113-23. PubMed ID: 7287672
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Choice of peptide and peptide length for the generation of antibodies reactive with the intact protein.
    Welling GW; Fries H
    FEBS Lett; 1985 Mar; 182(1):81-4. PubMed ID: 3972126
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of monomethoxypoly(ethylene glycol) modification of ribonuclease on antibody recognition, substrate accessibility and conformational stability.
    Caliceti P; Schiavon O; Veronese FM; Chaiken IM
    J Mol Recognit; 1990 Apr; 3(2):89-93. PubMed ID: 2361062
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiple antigenic sites on an eicosapeptide. I. Precipitin studies in the goat.
    Lieu T; Chapman G; Doscher MS; Mikoryak CA; Brown RK; Kong YM
    Immunology; 1975 Dec; 29(6):1133-43. PubMed ID: 53198
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemical modification of tryptophan residues in ribonuclease from a Rhizopus sp.
    Sanda A; Irie M
    J Biochem; 1980 Apr; 87(4):1079-87. PubMed ID: 7390980
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immunological determination of the order of folding of portions of the molecule during air oxidation of reduced ribonuclease.
    Chavez LG; Scherage HA
    Biochemistry; 1977 May; 16(9):1849-56. PubMed ID: 66932
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Esterification of the carboxyl groups in fibrinogen by the application of a highly specific methylating agent.
    Osbahr AJ
    Thromb Haemost; 1982 Oct; 48(2):226-31. PubMed ID: 6129716
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamics of ribonuclease A and ribonuclease S: computational and experimental studies.
    Nadig G; Ratnaparkhi GS; Varadarajan R; Vishveshwara S
    Protein Sci; 1996 Oct; 5(10):2104-14. PubMed ID: 8897611
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogen exchange in ribonuclease A and ribonuclease S: evidence for residual structure in the unfolded state under native conditions.
    Neira JL; Sevilla P; Menéndez M; Bruix M; Rico M
    J Mol Biol; 1999 Jan; 285(2):627-43. PubMed ID: 9878434
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Swapping structural determinants of ribonucleases: an energetic analysis of the hinge peptide 16-22.
    Mazzarella L; Vitagliano L; Zagari A
    Proc Natl Acad Sci U S A; 1995 Apr; 92(9):3799-803. PubMed ID: 7731986
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation and properties of trypsin-digested ribonuclease T1 split at the single arginyl peptide bond.
    Tamaoki H; Sakiyama F; Narita K
    J Biochem; 1976 Mar; 79(3):579-89. PubMed ID: 820695
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Structural and antigenic differences of pancreatic RNAse preparations modified by dextran ethers in an azo-combination reaction].
    Kurinenko BM; Kashkin AP; Kalacheva NV; Meringova LV; Nekhoroshkova ZM
    Biokhimiia; 1985 Apr; 50(4):581-8. PubMed ID: 2408680
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Full antitumor action of recombinant seminal ribonuclease depends on the removal of its N-terminal methionine.
    Adinolfi BS; Cafaro V; D'Alessio G; Di Donato A
    Biochem Biophys Res Commun; 1995 Aug; 213(2):525-32. PubMed ID: 7646508
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical modification of methionines of ribonuclease A with o-benzoquinone.
    Gupta MN; Vithayathil PJ
    Int J Pept Protein Res; 1980 Mar; 15(3):236-42. PubMed ID: 7380607
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A possible folding pathway of bovine pancreatic RNase.
    Némethy G; Scheraga HA
    Proc Natl Acad Sci U S A; 1979 Dec; 76(12):6050-4. PubMed ID: 293701
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Site of alkylation of the major ribonuclease from Aspergillus saitoi with iodoacetate.
    Irie M; Watanabe H; Ohgi K; Harada M
    J Biochem; 1986 Mar; 99(3):627-33. PubMed ID: 3711038
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alteration of a model antigen by Au(III) leads to T cell sensitization to cryptic peptides.
    Griem P; Panthel K; Kalbacher H; Gleichmann E
    Eur J Immunol; 1996 Feb; 26(2):279-87. PubMed ID: 8617292
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative Molecular Dynamics Analysis of RNase-S Complex Formation.
    Luitz MP; Bomblies R; Zacharias M
    Biophys J; 2017 Oct; 113(7):1466-1474. PubMed ID: 28978440
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of the structural and functional properties of RNase A and BS-RNase: a stepwise mutagenesis approach.
    Ercole C; Colamarino RA; Pizzo E; Fogolari F; Spadaccini R; Picone D
    Biopolymers; 2009 Dec; 91(12):1009-17. PubMed ID: 19263489
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissimilarity in the reductive unfolding pathways of two ribonuclease homologues.
    Narayan M; Xu G; Ripoll DR; Zhai H; Breuker K; Wanjalla C; Leung HJ; Navon A; Welker E; McLafferty FW; Scheraga HA
    J Mol Biol; 2004 May; 338(4):795-809. PubMed ID: 15099746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.