These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 844939)

  • 41. A comparison of kinetic parameters of polypeptide substrates for protein methylase II.
    Jamaluddin M; Kim S; Paik WK
    Biochemistry; 1976 Jul; 15(14):3077-81. PubMed ID: 782514
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Toward an antitumor form of bovine pancreatic ribonuclease: the crystal structure of three noncovalent dimeric mutants.
    Merlino A; Russo Krauss I; Perillo M; Mattia CA; Ercole C; Picone D; Vergara A; Sica F
    Biopolymers; 2009 Dec; 91(12):1029-37. PubMed ID: 19280639
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhancement of bovine pancreatic ribonuclease activity by mercaptoethanol.
    Watkins JB; Benz FW
    Science; 1978 Mar; 199(4333):1084-7. PubMed ID: 564548
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Posttranslational incorporation of noncanonical amino acids in the RNase S system by semisynthetic protein assembly.
    Genz M; Sträter N
    Methods Mol Biol; 2014; 1216():71-87. PubMed ID: 25213411
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Local and long-range interactions in the thermal unfolding transition of bovine pancreatic ribonuclease A.
    Navon A; Ittah V; Laity JH; Scheraga HA; Haas E; Gussakovsky EE
    Biochemistry; 2001 Jan; 40(1):93-104. PubMed ID: 11141060
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Purification and characterization of human pancreatic ribonuclease.
    Weickmann JL; Elson M; Glitz DG
    Biochemistry; 1981 Mar; 20(5):1272-8. PubMed ID: 6784751
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Review of Ribonuclease 7's Structure, Regulation, and Contributions to Host Defense.
    Becknell B; Spencer JD
    Int J Mol Sci; 2016 Mar; 17(3):423. PubMed ID: 27011175
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Substrate-leash amplification with ribonuclease S-peptide and S-protein.
    Ehrat M; Cecchini DJ; Giese RW
    Clin Chem; 1986 Sep; 32(9):1622-30. PubMed ID: 3742790
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of modification of the carboxyl groups of the sialic acid binding lectin from bullfrog (Rana catesbeiana) oocyte on anti-tumor activity.
    Iwama M; Ogawa Y; Sasaki N; Nitta K; Takayanagi Y; Ohgi K; Tsuji T; Irie M
    Biol Pharm Bull; 2001 Sep; 24(9):978-81. PubMed ID: 11558580
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural characterization of a three-disulfide intermediate of ribonuclease A involved in both the folding and unfolding pathways.
    Talluri S; Rothwarf DM; Scheraga HA
    Biochemistry; 1994 Aug; 33(34):10437-49. PubMed ID: 8068682
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Folding of ribonuclease A from a partially disordered conformation. Kinetic study under transition conditions.
    Lynn RM; Konishi Y; Scheraga HA
    Biochemistry; 1984 May; 23(11):2470-7. PubMed ID: 6477878
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Folding kinetics of mammalian ribonucleases.
    Lang K; Wrba A; Krebs H; Schmid FX; Beintema JJ
    FEBS Lett; 1986 Aug; 204(1):135-9. PubMed ID: 3743758
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reactivity of singlet oxygen toward proteins: the effect of structure in basic pancreatic trypsin inhibitor and in ribonuclease A.
    Michaeli A; Feitelson J
    Photochem Photobiol; 1997 Feb; 65(2):309-15. PubMed ID: 9066306
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Primary structure of a ribonuclease from bovine brain.
    Watanabe H; Katoh H; Ishii M; Komoda Y; Sanda A; Takizawa Y; Ohgi K; Irie M
    J Biochem; 1988 Dec; 104(6):939-45. PubMed ID: 3243767
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fluorescence and the structure of proteins. XXII. Fluorescence of aminotyrosyl residues formed in ribonuclease A.
    Seagle RL; Cowgill RW
    Biochim Biophys Acta; 1976 Aug; 439(2):470-8. PubMed ID: 986178
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Deamidated active intermediates in the irreversible acid denaturation of ribonuclease-A.
    Manjula BN; Acharya AS; Vithayathil PJ
    Int J Pept Protein Res; 1976; 8(3):275-82. PubMed ID: 6396
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Catalytic activity of bovine seminal ribonuclease is essential for its immunosuppressive and other biological activities.
    Kim JS; Soucek J; Matousek J; Raines RT
    Biochem J; 1995 Jun; 308 ( Pt 2)(Pt 2):547-50. PubMed ID: 7772040
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Increased methyl esterification of membrane proteins in aged red-blood cells. Preferential esterification of ankyrin and band-4.1 cytoskeletal proteins.
    Galletti P; Ingrosso D; Nappi A; Gragnaniello V; Iolascon A; Pinto L
    Eur J Biochem; 1983 Sep; 135(1):25-31. PubMed ID: 6224690
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optimum modification for the highest cytotoxicity of cationized ribonuclease.
    Futami J; Nukui E; Maeda T; Kosaka M; Tada H; Seno M; Yamada H
    J Biochem; 2002 Aug; 132(2):223-8. PubMed ID: 12153719
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chemical modifications of ribonuclease U1.
    Hashimoto J; Takahashi K
    J Biochem; 1977 Apr; 81(4):1175-80. PubMed ID: 18450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.