These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 8449463)

  • 41. Recent progress in the eye irritation test.
    Chu IH; Toft P
    Toxicol Ind Health; 1993; 9(6):1017-25. PubMed ID: 8191500
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluation of a human corneal epithelial cell line as an in vitro model for assessing ocular irritation.
    Kruszewski FH; Walker TL; DiPasquale LC
    Fundam Appl Toxicol; 1997 Apr; 36(2):130-40. PubMed ID: 9143482
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Exfoliative cytology as a refinement of the Draize eye irritancy test.
    Walberg J
    Toxicol Lett; 1983 Aug; 18(1-2):49-55. PubMed ID: 6623548
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A critical review of the assessment of eye irritation potential using the Draize rabbit eye test.
    York M; Steiling W
    J Appl Toxicol; 1998; 18(4):233-40. PubMed ID: 9719422
    [TBL] [Abstract][Full Text] [Related]  

  • 45. First alternative method validated by a retrospective weight-of-evidence approach to replace the Draize eye test for the identification of non-irritant substances for a defined applicability domain.
    Hartung T; Bruner L; Curren R; Eskes C; Goldberg A; McNamee P; Scott L; Zuang V
    ALTEX; 2010; 27(1):43-51. PubMed ID: 20390238
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hen egg chorioallantoic membrane bioassay: an in vitro alternative to draize eye irritation test for pesticide screening.
    Kishore AS; Surekha PA; Sekhar PV; Srinivas A; Murthy PB
    Int J Toxicol; 2008 Nov; 27(6):449-53. PubMed ID: 19482824
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Potential eye irritation of some "biodegradable" liquid scintillation cocktails determined in vitro.
    Vinardell MP; Rimbau V; Mitjans M
    Food Chem Toxicol; 2004 Aug; 42(8):1287-90. PubMed ID: 15207379
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The isolated chicken eye test as a suitable in vitro method for determining the eye irritation potential of household cleaning products.
    Schutte K; Prinsen MK; McNamee PM; Roggeband R
    Regul Toxicol Pharmacol; 2009 Aug; 54(3):272-81. PubMed ID: 19460408
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Second-phase validation study of short time exposure test for assessment of eye irritation potency of chemicals.
    Kojima H; Hayashi K; Sakaguchi H; Omori T; Otoizumi T; Sozu T; Kuwahara H; Hayashi T; Sakaguchi M; Toyoda A; Goto H; Watanabe S; Ahiko K; Nakamura T; Morimoto T
    Toxicol In Vitro; 2013 Sep; 27(6):1855-69. PubMed ID: 23747838
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Eye irritation potential: palm-based methyl ester sulphonates.
    Yusof NZ; Azizul Hasan ZA; Abd Maurad Z; Idris Z
    Cutan Ocul Toxicol; 2018 Jun; 37(2):103-111. PubMed ID: 28693384
    [TBL] [Abstract][Full Text] [Related]  

  • 51. IRAG working group 2. CAM-based assays. Interagency Regulatory Alternatives Group.
    Spielmann H; Liebsch M; Moldenhauer F; Holzhütter HG; Bagley DM; Lipman JM; Pape WJ; Miltenburger H; de Silva O; Hofer H; Steiling W
    Food Chem Toxicol; 1997 Jan; 35(1):39-66. PubMed ID: 9100814
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Draize eye test.
    Wilhelmus KR
    Surv Ophthalmol; 2001; 45(6):493-515. PubMed ID: 11425356
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An in silico expert system for the identification of eye irritants.
    Verma RP; Matthews EJ
    SAR QSAR Environ Res; 2015; 26(5):383-95. PubMed ID: 25967253
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluation of seven in vitro alternatives for ocular safety testing.
    Bruner LH; Kain DJ; Roberts DA; Parker RD
    Fundam Appl Toxicol; 1991 Jul; 17(1):136-49. PubMed ID: 1916072
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Prediction of ocular irritation by corneal pachymetry.
    Morgan RL; Sorenson SS; Castles TR
    Food Chem Toxicol; 1987 Aug; 25(8):609-13. PubMed ID: 3623352
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Critical appraisal of alternative irritation models: three decades of testing ophthalmic pharmaceuticals.
    Abdelkader H; Pierscionek B; Carew M; Wu Z; Alany RG
    Br Med Bull; 2015 Mar; 113(1):59-71. PubMed ID: 25686845
    [TBL] [Abstract][Full Text] [Related]  

  • 57. New approaches to the assessment of eye and skin irritation.
    Calvin G
    Toxicol Lett; 1992 Dec; 64-65 Spec No():157-64. PubMed ID: 1471169
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An alternative predictor of eye irritation that utilizes potential parameters of the human corneal epithelium model calculated based on Hansen solubility parameters.
    Fujii T; Ito L; Watanabe S; Yamamoto H
    Toxicol Lett; 2021 May; 342():1-5. PubMed ID: 33545305
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An interlaboratory study of the short time exposure (STE) test using SIRC cells for predicting eye irritation potential.
    Takahashi Y; Hayashi T; Koike M; Sakaguchi H; Kuwahara H; Nishiyama N
    Cutan Ocul Toxicol; 2010 Jun; 29(2):77-90. PubMed ID: 20178401
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Expansion of the applicability domain for highly volatile substances on the Short Time Exposure test method and the predictive performance in assessing eye irritation potential.
    Abo T; Yuki T; Xu R; Araki D; Takahashi Y; Sakaguchi H; Itagaki H
    J Toxicol Sci; 2018; 43(7):407-422. PubMed ID: 29973473
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.