BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 8449888)

  • 21. A novel and remarkably thermostable ferredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus.
    Aono S; Bryant FO; Adams MW
    J Bacteriol; 1989 Jun; 171(6):3433-9. PubMed ID: 2542225
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stability and sulfur-reduction activity in non-aqueous phase liquids of the hydrogenase from the hyperthermophile Pyrococcus furiosus.
    Kim C; Woodward CA; Kaufman EN; Adams MW
    Biotechnol Bioeng; 1999 Oct; 65(1):108-13. PubMed ID: 10440677
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heterologous Production of an Energy-Conserving Carbon Monoxide Dehydrogenase Complex in the Hyperthermophile Pyrococcus furiosus.
    Schut GJ; Lipscomb GL; Nguyen DM; Kelly RM; Adams MW
    Front Microbiol; 2016; 7():29. PubMed ID: 26858706
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Pyrococcus furiosus ironome is dominated by [Fe
    Vali SW; Haja DK; Brand RA; Adams MWW; Lindahl PA
    J Biol Chem; 2021; 296():100710. PubMed ID: 33930466
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides.
    Zillig W; Holz I; Janekovic D; Klenk HP; Imsel E; Trent J; Wunderl S; Forjaz VH; Coutinho R; Ferreira T
    J Bacteriol; 1990 Jul; 172(7):3959-65. PubMed ID: 2113915
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Purification and characterization of an alpha-glucosidase from a hyperthermophilic archaebacterium, Pyrococcus furiosus, exhibiting a temperature optimum of 105 to 115 degrees C.
    Costantino HR; Brown SH; Kelly RM
    J Bacteriol; 1990 Jul; 172(7):3654-60. PubMed ID: 2163383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heterotrophic sulfur reduction by Thermotoga sp. strain FjSS3.B1.
    Janssen PH; Morgan HW
    FEMS Microbiol Lett; 1992 Sep; 75(2-3):213-7. PubMed ID: 1398039
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deletion strains reveal metabolic roles for key elemental sulfur-responsive proteins in Pyrococcus furiosus.
    Bridger SL; Clarkson SM; Stirrett K; DeBarry MB; Lipscomb GL; Schut GJ; Westpheling J; Scott RA; Adams MW
    J Bacteriol; 2011 Dec; 193(23):6498-504. PubMed ID: 21965560
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Purification and properties of an extremely thermostable membrane-bound sulfur-reducing complex from the hyperthermophilic Pyrodictium abyssi.
    Dirmeier R; Keller M; Frey G; Huber H; Stetter KO
    Eur J Biochem; 1998 Mar; 252(3):486-91. PubMed ID: 9546664
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modification of the glycolytic pathway in Pyrococcus furiosus and the implications for metabolic engineering.
    Straub CT; Schut G; Otten JK; Keller LM; Adams MWW; Kelly RM
    Extremophiles; 2020 Jul; 24(4):511-518. PubMed ID: 32415359
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SurR regulates hydrogen production in Pyrococcus furiosus by a sulfur-dependent redox switch.
    Yang H; Lipscomb GL; Keese AM; Schut GJ; Thomm M; Adams MW; Wang BC; Scott RA
    Mol Microbiol; 2010 Sep; 77(5):1111-22. PubMed ID: 20598080
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Continuous hydrogen production by the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1.
    Kanai T; Imanaka H; Nakajima A; Uwamori K; Omori Y; Fukui T; Atomi H; Imanaka T
    J Biotechnol; 2005 Mar; 116(3):271-82. PubMed ID: 15707688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of Polysulfides in Reduction of Elemental Sulfur by the Hyperthermophilic Archaebacterium Pyrococcus furiosus.
    Blumentals II; Itoh M; Olson GJ; Kelly RM
    Appl Environ Microbiol; 1990 May; 56(5):1255-62. PubMed ID: 16348181
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimizing Strategies for Bio-Based Ethanol Production Using Genome-Scale Metabolic Modeling of the Hyperthermophilic Archaeon, Pyrococcus furiosus.
    Vailionis JL; Zhao W; Zhang K; Rodionov DA; Lipscomb GL; Tanwee TNN; O'Quinn HC; Bing RG; Kelly RM; Adams MWW; Zhang Y
    Appl Environ Microbiol; 2023 Jun; 89(6):e0056323. PubMed ID: 37289085
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Growth and gas production for hyperthermophilic archaebacterium, Pyrococcus furiosus.
    Malik B; Su WW; Wald HL; Blumentals II; Kelly RM
    Biotechnol Bioeng; 1989 Oct; 34(8):1050-7. PubMed ID: 18588198
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Growth of Methanosarcina barkeri (Fusaro) under nonmethanogenic conditions by the fermentation of pyruvate to acetate: ATP synthesis via the mechanism of substrate level phosphorylation.
    Bock AK; Schönheit P
    J Bacteriol; 1995 Apr; 177(8):2002-7. PubMed ID: 7721692
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sequence, expression in Escherichia coli, and analysis of the gene encoding a novel intracellular protease (PfpI) from the hyperthermophilic archaeon Pyrococcus furiosus.
    Halio SB; Blumentals II; Short SA; Merrill BM; Kelly RM
    J Bacteriol; 1996 May; 178(9):2605-12. PubMed ID: 8626329
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adaptations of anaerobic archaea to life under extreme energy limitation.
    Mayer F; Müller V
    FEMS Microbiol Rev; 2014 May; 38(3):449-72. PubMed ID: 24118021
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antimicrobial activity of the iron-sulfur nitroso compound Roussin's black salt [Fe4S3(NO)7] on the hyperthermophilic archaeon Pyrococcus furiosus.
    Hamilton-Brehm SD; Schut GJ; Adams MW
    Appl Environ Microbiol; 2009 Apr; 75(7):1820-5. PubMed ID: 19201977
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal.
    Verhaart MR; Bielen AA; van der Oost J; Stams AJ; Kengen SW
    Environ Technol; 2010; 31(8-9):993-1003. PubMed ID: 20662387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.