These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Expression of osteopontin and its ligand, CD44, in the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis. Kim MD; Cho HJ; Shin T J Neuroimmunol; 2004 Jun; 151(1-2):78-84. PubMed ID: 15145606 [TBL] [Abstract][Full Text] [Related]
23. MIP-1alpha and MCP-1 differentially regulate acute and relapsing autoimmune encephalomyelitis as well as Th1/Th2 lymphocyte differentiation. Karpus WJ; Kennedy KJ J Leukoc Biol; 1997 Nov; 62(5):681-7. PubMed ID: 9365124 [TBL] [Abstract][Full Text] [Related]
24. High IL-6 and low IL-10 in the central nervous system are associated with protracted relapsing EAE in DA rats. Diab A; Zhu J; Xiao BG; Mustafa M; Link H J Neuropathol Exp Neurol; 1997 Jun; 56(6):641-50. PubMed ID: 9184655 [TBL] [Abstract][Full Text] [Related]
25. Expression of the colony stimulating factor-1 receptor (c-fms product) by cells at the human uteroplacental interface. Jokhi PP; Chumbley G; King A; Gardner L; Loke YW Lab Invest; 1993 Mar; 68(3):308-20. PubMed ID: 8450649 [TBL] [Abstract][Full Text] [Related]
26. Induction of glial L-CCR mRNA expression in spinal cord and brain in experimental autoimmune encephalomyelitis. Brouwer N; Zuurman MW; Wei T; Ransohoff RM; Boddeke HW; Biber K Glia; 2004 Apr; 46(1):84-94. PubMed ID: 14999816 [TBL] [Abstract][Full Text] [Related]
27. Expression of chemokine and receptors in Lewis rats with experimental autoimmune anterior uveitis. Fang IM; Yang CH; Lin CP; Yang CM; Chen MS Exp Eye Res; 2004 Jun; 78(6):1043-55. PubMed ID: 15109911 [TBL] [Abstract][Full Text] [Related]
28. Macrophage accumulation at a site of renal inflammation is dependent on the M-CSF/c-fms pathway. Le Meur Y; Tesch GH; Hill PA; Mu W; Foti R; Nikolic-Paterson DJ; Atkins RC J Leukoc Biol; 2002 Sep; 72(3):530-7. PubMed ID: 12223521 [TBL] [Abstract][Full Text] [Related]
29. Expression of the heparan sulfate-degrading enzyme heparanase is induced in infiltrating CD4+ T cells in experimental autoimmune encephalomyelitis and regulated at the level of transcription by early growth response gene 1. de Mestre AM; Staykova MA; Hornby JR; Willenborg DO; Hulett MD J Leukoc Biol; 2007 Nov; 82(5):1289-300. PubMed ID: 17656651 [TBL] [Abstract][Full Text] [Related]
30. Differential effects of macrophage- and granulocyte-macrophage colony-stimulating factors on cytokine gene expression during rat alveolar macrophage differentiation into multinucleated giant cells (MGC): role for IL-6 in type 2 MGC formation. Lemaire I; Yang H; Lafont V; Dornand J; Commes T; Cantin MF J Immunol; 1996 Dec; 157(11):5118-25. PubMed ID: 8943422 [TBL] [Abstract][Full Text] [Related]
31. Lesional accumulation of P2X(4) receptor(+) macrophages in rat CNS during experimental autoimmune encephalomyelitis. Guo LH; Schluesener HJ Neuroscience; 2005; 134(1):199-205. PubMed ID: 15964696 [TBL] [Abstract][Full Text] [Related]
32. Expression of macrophage colony-stimulating factor and its receptor in hepatic granulomas of Kupffer-cell-depleted mice. Moriyama H; Yamamoto T; Takatsuka H; Umezu H; Tokunaga K; Nagano T; Arakawa M; Naito M Am J Pathol; 1997 Jun; 150(6):2047-60. PubMed ID: 9176397 [TBL] [Abstract][Full Text] [Related]
33. The relationship between point mutation and abnormal expression of c-fms oncogene in hepatocellular carcinoma. Yang DH; Huang W; Cui J; Shu JC; Tang SH; Zhang WJ; Liang JH Hepatobiliary Pancreat Dis Int; 2004 Feb; 3(1):86-9. PubMed ID: 14969845 [TBL] [Abstract][Full Text] [Related]
34. Expression of CSF-I and CSF-I receptor by normal lactating mammary epithelial cells. Sapi E; Flick MB; Rodov S; Carter D; Kacinski BM J Soc Gynecol Investig; 1998; 5(2):94-101. PubMed ID: 9509388 [TBL] [Abstract][Full Text] [Related]
35. Co-expression of M-CSF transcripts and protein, FMS (M-CSF receptor) transcripts and protein, and steroid receptor content in adenocarcinomas of the ovary. Kommoss F; Wölfle J; Bauknecht T; Pfisterer J; Kiechle-Schwarz M; Pfleiderer A; Sauerbrei W; Kiehl R; Kacinski BM J Pathol; 1994 Oct; 174(2):111-9. PubMed ID: 7965406 [TBL] [Abstract][Full Text] [Related]
36. The effects of macrophage depletion on the clinical and pathologic expression of experimental allergic encephalomyelitis. Brosnan CF; Bornstein MB; Bloom BR J Immunol; 1981 Feb; 126(2):614-20. PubMed ID: 6256443 [No Abstract] [Full Text] [Related]
37. Expression of the colony-stimulating factor 1 receptor in B lymphocytes. Baker AH; Ridge SA; Hoy T; Cachia PG; Culligan D; Baines P; Whittaker JA; Jacobs A; Padua RA Oncogene; 1993 Feb; 8(2):371-8. PubMed ID: 8426743 [TBL] [Abstract][Full Text] [Related]
38. G-CSF therapy of ongoing experimental allergic encephalomyelitis via chemokine- and cytokine-based immune deviation. Zavala F; Abad S; Ezine S; Taupin V; Masson A; Bach JF J Immunol; 2002 Feb; 168(4):2011-9. PubMed ID: 11823538 [TBL] [Abstract][Full Text] [Related]
39. Expression of Macrophage Colony-Stimulating Factor CSF-1 in Spinal Cord Neurons in Mice with Experimental Autoimmune Encephalomyelitis. Balashov AV; Balashov VP; Shikhanov NP; Gushchina SV Bull Exp Biol Med; 2024 Sep; 177(5):682-685. PubMed ID: 39352675 [TBL] [Abstract][Full Text] [Related]
40. The role of prolactin in autoimmune demyelination: suppression of experimental allergic encephalomyelitis by bromocriptine. Riskind PN; Massacesi L; Doolittle TH; Hauser SL Ann Neurol; 1991 May; 29(5):542-7. PubMed ID: 1859183 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]