These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 845118)

  • 1. p-Cymene pathway in Pseudomonas putida: ring cleavage of 2,3-dihydroxy-p-cumate and subsequent reactions.
    DeFrank JJ; Ribbons DW
    J Bacteriol; 1977 Mar; 129(3):1365-74. PubMed ID: 845118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. p-cymene pathway in Pseudomonas putida: initial reactions.
    DeFrank JJ; Ribbons DW
    J Bacteriol; 1977 Mar; 129(3):1356-64. PubMed ID: 845117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. p-Cumate catabolic pathway in Pseudomonas putida Fl: cloning and characterization of DNA carrying the cmt operon.
    Eaton RW
    J Bacteriol; 1996 Mar; 178(5):1351-62. PubMed ID: 8631713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. p-Cymene catabolic pathway in Pseudomonas putida F1: cloning and characterization of DNA encoding conversion of p-cymene to p-cumate.
    Eaton RW
    J Bacteriol; 1997 May; 179(10):3171-80. PubMed ID: 9150211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physically associated enzymes produce and metabolize 2-hydroxy-2,4-dienoate, a chemically unstable intermediate formed in catechol metabolism via meta cleavage in Pseudomonas putida.
    Harayama S; Rekik M; Ngai KL; Ornston LN
    J Bacteriol; 1989 Nov; 171(11):6251-8. PubMed ID: 2681159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutants defective in isomerase and decarboxylase activities of the 4-hydroxyphenylacetic acid meta-cleavage pathway in Pseudomonas putida.
    Barbour MG; Bayly RC
    J Bacteriol; 1980 May; 142(2):480-5. PubMed ID: 6769900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial metabolism of side chain fluorinated aromatics: cometabolism of 4-trifluoromethyl(TFM)-benzoate by 4-isopropylbenzoate grown Pseudomonas putida JT strains.
    Engesser KH; Rubio MA; Ribbons DW
    Arch Microbiol; 1988 Jan; 149(3):198-206. PubMed ID: 3365097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constitutive synthesis of enzymes of the protocatechuate pathway and of the beta-ketoadipate uptake system in mutant strains of Pseudomonas putida.
    Parke D; Ornston LN
    J Bacteriol; 1976 Apr; 126(1):272-81. PubMed ID: 1262305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of catechol and the methylcatechols as inducers of aromatic metabolism in Pseudomonas putida.
    Murray K; Williams PA
    J Bacteriol; 1974 Mar; 117(3):1153-7. PubMed ID: 4813893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of the meta cleavage pathway for benzoate oxidation by Pseudomonas putida.
    Feist CF; Hegeman GD
    J Bacteriol; 1969 Nov; 100(2):1121-3. PubMed ID: 5359614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catabolism of pseudocumene and 3-ethyltoluene by Pseudomonas putida (arvilla) mt-2: evidence for new functions of the TOL (pWWO) plasmid.
    Kunz DA; Chapman PJ
    J Bacteriol; 1981 Apr; 146(1):179-91. PubMed ID: 7216999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathways for the degradation of m-cresol and p-cresol by Pseudomonas putida.
    Hopper DJ; Taylor DG
    J Bacteriol; 1975 Apr; 122(1):1-6. PubMed ID: 1123316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of side-chain substituents on the position of cleavage of the benzene ring by Pseudomonas fluorescens.
    Seidman MM; Toms A; Wood JM
    J Bacteriol; 1969 Mar; 97(3):1192-7. PubMed ID: 5776526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid.
    Williams PA; Murray K
    J Bacteriol; 1974 Oct; 120(1):416-23. PubMed ID: 4418209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. p-Cymene pathway in Pseudomonas putida: selective enrichment of defective mutants by using halogenated substrate analogs.
    Wigmore GJ; Ribbons DW
    J Bacteriol; 1980 Aug; 143(2):816-24. PubMed ID: 7204334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of 2-bromo-, 2-chloro- and 2-fluorobenzoate by Pseudomonas putida CLB 250.
    Engesser KH; Schulte P
    FEMS Microbiol Lett; 1989 Jul; 51(1):143-7. PubMed ID: 2777062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expansion of growth substrate range in Pseudomonas putida F1 by mutations in both cymR and todS, which recruit a ring-fission hydrolase CmtE and induce the tod catabolic operon, respectively.
    Choi EN; Cho MC; Kim Y; Kim CK; Lee K
    Microbiology (Reading); 2003 Mar; 149(Pt 3):795-805. PubMed ID: 12634347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The metabolism of cresols by species of Pseudomonas.
    Bayly RC; Dagley S; Gibson DT
    Biochem J; 1966 Nov; 101(2):293-301. PubMed ID: 5966268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of resorcinylic compounds by bacteria: orcinol pathway in Pseudomonas putida.
    Chapman PJ; Ribbons DW
    J Bacteriol; 1976 Mar; 125(3):975-84. PubMed ID: 1254564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inducible uptake system for -carboxy-cis, cis-muconate in a permeability mutant of Pseudomonas putida.
    Meagher RB; McCorkle GM; Ornston MK; Ornston LN
    J Bacteriol; 1972 Aug; 111(2):465-73. PubMed ID: 5053469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.