BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 8451240)

  • 1. Thermodynamic integration calculations of binding free energy difference for Gly-169 mutation in subtilisin BPN'.
    Wang CX; Shi YY; Zhou F; Wang L
    Proteins; 1993 Jan; 15(1):5-9. PubMed ID: 8451240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free energy calculations on binding and catalysis by alpha-lytic protease: the role of substrate size in the P1 pocket.
    Caldwell JW; Agard DA; Kollman PA
    Proteins; 1991; 10(2):140-8. PubMed ID: 1896427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing subtilisin BPN' to cleave substrates containing dibasic residues.
    Ballinger MD; Tom J; Wells JA
    Biochemistry; 1995 Oct; 34(41):13312-9. PubMed ID: 7577915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Furilisin: a variant of subtilisin BPN' engineered for cleaving tribasic substrates.
    Ballinger MD; Tom J; Wells JA
    Biochemistry; 1996 Oct; 35(42):13579-85. PubMed ID: 8885837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MD simulation of subtilisin BPN' in a crystal environment.
    Heiner AP; Berendsen HJ; van Gunsteren WF
    Proteins; 1992 Dec; 14(4):451-64. PubMed ID: 1438183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free energy perturbation calculations on binding and catalysis after mutating Asn 155 in subtilisin.
    Rao SN; Singh UC; Bash PA; Kollman PA
    Nature; 1987 Aug 6-12; 328(6130):551-4. PubMed ID: 3302725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The crystal structure of an autoprocessed Ser221Cys-subtilisin E-propeptide complex at 2.0 A resolution.
    Jain SC; Shinde U; Li Y; Inouye M; Berman HM
    J Mol Biol; 1998 Nov; 284(1):137-44. PubMed ID: 9811547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free energy perturbation calculations on binding and catalysis after mutating threonine 220 in subtilisin.
    Mizushima N; Spellmeyer D; Hirono S; Pearlman D; Kollman P
    J Biol Chem; 1991 Jun; 266(18):11801-9. PubMed ID: 1904871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subtilisin BPN' variants: increased hydrolytic activity on surface-bound substrates via decreased surface activity.
    Brode PF; Erwin CR; Rauch DS; Barnett BL; Armpriester JM; Wang ES; Rubingh DN
    Biochemistry; 1996 Mar; 35(10):3162-9. PubMed ID: 8605150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic studies of the inhibitory effects of propeptides subtilisin BPN' and Carlsberg to bacterial serine proteases.
    Huang HW; Chen WC; Wu CY; Yu HC; Lin WY; Chen ST; Wang KT
    Protein Eng; 1997 Oct; 10(10):1227-33. PubMed ID: 9488148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure prediction of subtilisin BPN' mutants using molecular dynamics methods.
    Heiner AP; Berendsen HJ; van Gunsteren WF
    Protein Eng; 1993 Jun; 6(4):397-408. PubMed ID: 8332597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering a novel specificity in subtilisin BPN'.
    Rheinnecker M; Baker G; Eder J; Fersht AR
    Biochemistry; 1993 Feb; 32(5):1199-203. PubMed ID: 8448130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large increases in general stability for subtilisin BPN' through incremental changes in the free energy of unfolding.
    Pantoliano MW; Whitlow M; Wood JF; Dodd SW; Hardman KD; Rollence ML; Bryan PN
    Biochemistry; 1989 Sep; 28(18):7205-13. PubMed ID: 2684274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of calcium-independent subtilisin BPN' with restored thermal stability folded without the prodomain.
    Almog O; Gallagher T; Tordova M; Hoskins J; Bryan P; Gilliland GL
    Proteins; 1998 Apr; 31(1):21-32. PubMed ID: 9552156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A thermodynamic study of mutant forms of Streptomyces subtilisin inhibitor. I. Hydrophobic replacements at the position of Met103.
    Tamura A; Sturtevant JM
    J Mol Biol; 1995 Jun; 249(3):625-35. PubMed ID: 7783215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering the independent folding of the subtilisin BPN' prodomain: analysis of two-state folding versus protein stability.
    Ruvinov S; Wang L; Ruan B; Almog O; Gilliland GL; Eisenstein E; Bryan PN
    Biochemistry; 1997 Aug; 36(34):10414-21. PubMed ID: 9265621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium-independent subtilisin by design.
    Gallagher T; Bryan P; Gilliland GL
    Proteins; 1993 Jun; 16(2):205-13. PubMed ID: 8332608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Achievement of renaturation of subtilisin BPN' by a novel procedure using organic salts and a digestible mutant of Streptomyces subtilisin inhibitor.
    Matsubara M; Kurimoto E; Kojima S; Miura K; Sakai T
    FEBS Lett; 1994 Apr; 342(2):193-6. PubMed ID: 8143876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of long-range electrostatic interactions to the stabilization of the catalytic transition state of the serine protease subtilisin BPN'.
    Jackson SE; Fersht AR
    Biochemistry; 1993 Dec; 32(50):13909-16. PubMed ID: 8268166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting proteinase specificities from free energy calculations.
    Mekonnen SM; Olufsen M; SmalÄs AO; Brandsdal BO
    J Mol Graph Model; 2006 Oct; 25(2):176-85. PubMed ID: 16386933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.