These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 845140)

  • 1. Static and kinetic studies by fluorometry on the interaction between gluconolactone and glucoamylase from Rh. niveus.
    Ohnishi M; Yamashita T; Hiromi K
    J Biochem; 1977 Jan; 81(1):99-105. PubMed ID: 845140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the subsite structure of amylases. III. Inhibition by gluconolactone of the hydrolysis of maltodextrin catalyzed by glucoamylase from Rhizopus niveus.
    Ohnishi M; Yamashita T; Hiromi K
    J Biochem; 1976 May; 79(5):1007-12. PubMed ID: 956133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Equilibrium and kinetic studies on the binding of gluconolactone to almond beta-glucosidase in the absence and presence of glucose.
    Tanaka A; Ito M; Hiromi K
    J Biochem; 1986 Nov; 100(5):1379-85. PubMed ID: 3102466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the subsite structure of amylases. I. Interaction of glucoamylase with substrate and analogues studied by difference-spectrophotometry.
    Onishi M; Kegai H; Hiromi K
    J Biochem; 1975 Apr; 77(4):695-703. PubMed ID: 1150637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subsite structure and ligand binding mechanism of glucoamylase.
    Hiromi K; Ohnishi M; Tanaka A
    Mol Cell Biochem; 1983; 51(1):79-95. PubMed ID: 6406831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Static and kinetic studies on the binding of Streptomyces trehalase inhibitor SGI with Rhizopus glucoamylase. Comparison with glucose and gluconolactone.
    Tanaka A; Ohnishi M; Hiromi K; Miyata S; Murao S
    J Biochem; 1982 Jan; 91(1):1-9. PubMed ID: 6461639
    [No Abstract]   [Full Text] [Related]  

  • 7. Stopped-flow kinetic studies on the binding of gluconolactone and maltose to glucoamylase.
    Tanaka A; Ohnishi M; Hiromi K
    Biochemistry; 1982 Jan; 21(1):107-13. PubMed ID: 7059572
    [No Abstract]   [Full Text] [Related]  

  • 8. Different kinetic pathways of the binding of two biphenyl analogues of colchicine to tubulin.
    Dumortier C; Gorbunoff MJ; Andreu JM; Engelborghs Y
    Biochemistry; 1996 Apr; 35(14):4387-95. PubMed ID: 8605187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stopped-flow kinetic analysis of the interaction of Escherichia coli RNA polymerase with the bacteriophage T7 A1 promoter.
    Johnson RS; Chester RE
    J Mol Biol; 1998 Oct; 283(2):353-70. PubMed ID: 9769210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic and thermodynamic studies of tet repressor-tetracycline interaction.
    Kedracka-Krok S; Gorecki A; Bonarek P; Wasylewski Z
    Biochemistry; 2005 Jan; 44(3):1037-46. PubMed ID: 15654760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on the subsite structure of amylases. IV. Tryptophan residues of glucoamylase from Rhizopus niveus studied by chemical modification with N-bromosuccinimide.
    Ohnishi M; Hiromi K
    J Biochem; 1976 Jan; 79(1):11-16. PubMed ID: 939754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Base-sequence specificity of Hoechst 33258 and DAPI binding to five (A/T)4 DNA sites with kinetic evidence for more than one high-affinity Hoechst 33258-AATT complex.
    Breusegem SY; Clegg RM; Loontiens FG
    J Mol Biol; 2002 Feb; 315(5):1049-61. PubMed ID: 11827475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a partially rate-determining step in the catalytic mechanism of cAMP-dependent protein kinase: a transient kinetic study using stopped-flow fluorescence spectroscopy.
    Lew J; Taylor SS; Adams JA
    Biochemistry; 1997 Jun; 36(22):6717-24. PubMed ID: 9184152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic mechanism of luciferase subunit folding and assembly.
    Clark AC; Raso SW; Sinclair JF; Ziegler MM; Chaffotte AF; Baldwin TO
    Biochemistry; 1997 Feb; 36(7):1891-9. PubMed ID: 9048575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slow-binding inhibition of gamma-aminobutyric acid aminotransferase by hydrazine analogues.
    Lightcap ES; Silverman RB
    J Med Chem; 1996 Feb; 39(3):686-94. PubMed ID: 8576911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stopped-flow fluorescence and steady-state kinetic studies of ligand-binding reactions of glucoamylase from Aspergillus niger.
    Olsen K; Svensson B; Christensen U
    Eur J Biochem; 1992 Oct; 209(2):777-84. PubMed ID: 1425682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Penicillin-binding protein 2a from methicillin-resistant Staphylococcus aureus: kinetic characterization of its interactions with beta-lactams using electrospray mass spectrometry.
    Lu WP; Sun Y; Bauer MD; Paule S; Koenigs PM; Kraft WG
    Biochemistry; 1999 May; 38(20):6537-46. PubMed ID: 10350472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of association and dissociation of two enantiomers, NSC 613863 (R)-(+) and NSC 613862 (S)-(-) (CI 980), to tubulin.
    Barbier P; Peyrot V; Dumortier C; D'Hoore A; Rener GA; Engelborghs Y
    Biochemistry; 1996 Feb; 35(6):2008-15. PubMed ID: 8639685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic study on the interaction of Rhizopus chinensis aspartic protease with Streptomyces pepsin inhibitor (acetylpepstatin).
    Nakatani H; Hiromi K; Kitagishi K
    Arch Biochem Biophys; 1988 Jun; 263(2):311-4. PubMed ID: 3288122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic studies and structural models of the association of E. coli sigma(70) RNA polymerase with the lambdaP(R) promoter: large scale conformational changes in forming the kinetically significant intermediates.
    Saecker RM; Tsodikov OV; McQuade KL; Schlax PE; Capp MW; Record MT
    J Mol Biol; 2002 Jun; 319(3):649-71. PubMed ID: 12054861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.