These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 8451441)

  • 1. Artificial neural networks in mammography: application to decision making in the diagnosis of breast cancer.
    Wu Y; Giger ML; Doi K; Vyborny CJ; Schmidt RA; Metz CE
    Radiology; 1993 Apr; 187(1):81-7. PubMed ID: 8451441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multimodality computerized diagnosis of breast lesions using mammography and sonography.
    Drukker K; Horsch K; Giger ML
    Acad Radiol; 2005 Aug; 12(8):970-9. PubMed ID: 16087091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of missing data in evaluating artificial neural networks trained on complete data.
    Markey MK; Tourassi GD; Margolis M; DeLong DM
    Comput Biol Med; 2006 May; 36(5):516-25. PubMed ID: 15893745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial Neural Networks for differential diagnosis of breast lesions in MR-Mammography: a systematic approach addressing the influence of network architecture on diagnostic performance using a large clinical database.
    Dietzel M; Baltzer PA; Dietzel A; Zoubi R; Gröschel T; Burmeister HP; Bogdan M; Kaiser WA
    Eur J Radiol; 2012 Jul; 81(7):1508-13. PubMed ID: 21459533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preliminary investigation of a Bayesian network for mammographic diagnosis of breast cancer.
    Kahn CE; Roberts LM; Wang K; Jenks D; Haddawy P
    Proc Annu Symp Comput Appl Med Care; 1995; ():208-12. PubMed ID: 8563269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Usefulness of an artificial neural network for differentiating benign from malignant pulmonary nodules on high-resolution CT: evaluation with receiver operating characteristic analysis.
    Matsuki Y; Nakamura K; Watanabe H; Aoki T; Nakata H; Katsuragawa S; Doi K
    AJR Am J Roentgenol; 2002 Mar; 178(3):657-63. PubMed ID: 11856693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer-aided diagnosis with temporal analysis to improve radiologists' interpretation of mammographic mass lesions.
    Timp S; Varela C; Karssemeijer N
    IEEE Trans Inf Technol Biomed; 2010 May; 14(3):803-8. PubMed ID: 20403792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of artificial neural networks in computer-aided diagnosis.
    Liu B
    Methods Mol Biol; 2015; 1260():195-204. PubMed ID: 25502383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting breast cancer invasion with artificial neural networks on the basis of mammographic features.
    Lo JY; Baker JA; Kornguth PJ; Iglehart JD; Floyd CE
    Radiology; 1997 Apr; 203(1):159-63. PubMed ID: 9122385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breast cancer: prediction with artificial neural network based on BI-RADS standardized lexicon.
    Baker JA; Kornguth PJ; Lo JY; Williford ME; Floyd CE
    Radiology; 1995 Sep; 196(3):817-22. PubMed ID: 7644649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of diagnostic accuracy of breast masses using digitized images versus screen-film mammography.
    Liang Z; Du X; Liu J; Yao X; Yang Y; Li K
    Acta Radiol; 2008 Jul; 49(6):618-22. PubMed ID: 18568552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using computer-extracted image features for modeling of error-making patterns in detection of mammographic masses among radiology residents.
    Zhang J; Lo JY; Kuzmiak CM; Ghate SV; Yoon SC; Mazurowski MA
    Med Phys; 2014 Sep; 41(9):091907. PubMed ID: 25186394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating three-class ideal observer decision variables for computerized detection and classification of mammographic mass lesions.
    Edwards DC; Lan L; Metz CE; Giger ML; Nishikawa RM
    Med Phys; 2004 Jan; 31(1):81-90. PubMed ID: 14761024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observer study of a prototype clinical decision support system for breast cancer diagnosis using dynamic contrast-enhanced MRI.
    Boroczky L; Simpson M; Abe H; Drysdale J
    AJR Am J Roentgenol; 2013 Feb; 200(2):277-83. PubMed ID: 23345346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Case-based reasoning computer algorithm that uses mammographic findings for breast biopsy decisions.
    Floyd CE; Lo JY; Tourassi GD
    AJR Am J Roentgenol; 2000 Nov; 175(5):1347-52. PubMed ID: 11044039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breast mass lesions: computer-aided diagnosis models with mammographic and sonographic descriptors.
    Jesneck JL; Lo JY; Baker JA
    Radiology; 2007 Aug; 244(2):390-8. PubMed ID: 17562812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural network analysis of breast cancer from MRI findings.
    Abdolmaleki P; Buadu LD; Murayama S; Murakami J; Hashiguchi N; Yabuuchi H; Masuda K
    Radiat Med; 1997; 15(5):283-93. PubMed ID: 9445150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced integrated technique in breast cancer thermography.
    Ng EY; Kee EC
    J Med Eng Technol; 2008; 32(2):103-14. PubMed ID: 17852648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Malignant and benign clustered microcalcifications: automated feature analysis and classification.
    Jiang Y; Nishikawa RM; Wolverton DE; Metz CE; Giger ML; Schmidt RA; Vyborny CJ; Doi K
    Radiology; 1996 Mar; 198(3):671-8. PubMed ID: 8628853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network.
    Kooi T; van Ginneken B; Karssemeijer N; den Heeten A
    Med Phys; 2017 Mar; 44(3):1017-1027. PubMed ID: 28094850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.