BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 8451460)

  • 1. A compartmental model for the prediction of breath concentration and absorbed dose of chloroform after exposure while showering.
    Chinery RL; Gleason AK
    Risk Anal; 1993 Feb; 13(1):51-62. PubMed ID: 8451460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking a PBPK model for chloroform with measured breath concentrations in showers: implications for dermal exposure models.
    McKone TE
    J Expo Anal Environ Epidemiol; 1993; 3(3):339-65. PubMed ID: 8260842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of a physiologically based pharmacokinetic model to identify exposures consistent with human biomonitoring data for chloroform.
    Tan YM; Liao KH; Conolly RB; Blount BC; Mason AM; Clewell HJ
    J Toxicol Environ Health A; 2006 Sep; 69(18):1727-56. PubMed ID: 16864423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chloroform exposure and the health risk associated with multiple uses of chlorinated tap water.
    Jo WK; Weisel CP; Lioy PJ
    Risk Anal; 1990 Dec; 10(4):581-5. PubMed ID: 2287785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A distributed parameter physiologically-based pharmacokinetic model for dermal and inhalation exposure to volatile organic compounds.
    Roy A; Weisel CP; Lioy PJ; Georgopoulos PG
    Risk Anal; 1996 Apr; 16(2):147-60. PubMed ID: 8638037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimates of cancer risk from chloroform exposure during showering in Taiwan.
    Kuo HW; Chiang TF; Lo II; Lai JS; Chan CC; Wang JD
    Sci Total Environ; 1998 Jul; 218(1):1-7. PubMed ID: 9718740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiologically based pharmacokinetic modeling of the temperature-dependent dermal absorption of chloroform by humans following bath water exposures.
    Corley RA; Gordon SM; Wallace LA
    Toxicol Sci; 2000 Jan; 53(1):13-23. PubMed ID: 10653516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human respiratory uptake of chloroform and haloketones during showering.
    Xu X; Weisel CP
    J Expo Anal Environ Epidemiol; 2005 Jan; 15(1):6-16. PubMed ID: 15138448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systemic uptake and clearance of chloroform by hairless rats following dermal exposure. I. Brief exposure to aqueous solutions.
    Islam MS; Zhao L; Zhou J; Dong L; McDougal JN; Flynn GL
    Risk Anal; 1996 Jun; 16(3):349-57. PubMed ID: 8693161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A physiologically based pharmacokinetic assessment of tetrachloroethylene in groundwater for a bathing and showering determination.
    Rao HV; Brown DR
    Risk Anal; 1993 Feb; 13(1):37-49. PubMed ID: 8451459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Routes of chloroform exposure and body burden from showering with chlorinated tap water.
    Jo WK; Weisel CP; Lioy PJ
    Risk Anal; 1990 Dec; 10(4):575-80. PubMed ID: 2287784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of water temperature on dermal exposure to chloroform.
    Gordon SM; Wallace LA; Callahan PJ; Kenny DV; Brinkman MC
    Environ Health Perspect; 1998 Jun; 106(6):337-45. PubMed ID: 9618350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dermal uptake of chloroform and haloketones during bathing.
    Xu X; Weisel CP
    J Expo Anal Environ Epidemiol; 2005 Jul; 15(4):289-96. PubMed ID: 15316574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PBTK modeling demonstrates contribution of dermal and inhalation exposure components to end-exhaled breath concentrations of naphthalene.
    Kim D; Andersen ME; Chao YC; Egeghy PP; Rappaport SM; Nylander-French LA
    Environ Health Perspect; 2007 Jun; 115(6):894-901. PubMed ID: 17589597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ingestion, inhalation, and dermal exposures to chloroform and trichloroethene from tap water.
    Weisel CP; Jo WK
    Environ Health Perspect; 1996 Jan; 104(1):48-51. PubMed ID: 8834861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of PBPK model structure on interpretation of in vivo human aqueous dermal exposure trials.
    Norman AM; Kissel JC; Shirai JH; Smith JA; Stumbaugh KL; Bunge AL
    Toxicol Sci; 2008 Jul; 104(1):210-7. PubMed ID: 18381354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative source allocation of TDI to drinking water for derivation of a criterion for chloroform: a Monte-Carlo and multi-exposure assessment.
    Niizuma S; Matsui Y; Ohno K; Itoh S; Matsushita T; Shirasaki N
    Regul Toxicol Pharmacol; 2013 Oct; 67(1):98-107. PubMed ID: 23867354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utility of real time breath analysis and physiologically based pharmacokinetic modeling to determine the percutaneous absorption of methyl chloroform in rats and humans.
    Poet TS; Thrall KD; Corley RA; Hui X; Edwards JA; Weitz KK; Maibach HI; Wester RC
    Toxicol Sci; 2000 Mar; 54(1):42-51. PubMed ID: 10746930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chloroform: exposure estimation, hazard characterization, and exposure-response analysis.
    Meek ME; Beauchamp R; Long G; Moir D; Turner L; Walker M
    J Toxicol Environ Health B Crit Rev; 2002; 5(3):283-334. PubMed ID: 12162870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Bayesian population PBPK model for multiroute chloroform exposure.
    Yang Y; Xu X; Georgopoulos PG
    J Expo Sci Environ Epidemiol; 2010 Jun; 20(4):326-41. PubMed ID: 19471319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.