These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 8451460)
1. A compartmental model for the prediction of breath concentration and absorbed dose of chloroform after exposure while showering. Chinery RL; Gleason AK Risk Anal; 1993 Feb; 13(1):51-62. PubMed ID: 8451460 [TBL] [Abstract][Full Text] [Related]
2. Linking a PBPK model for chloroform with measured breath concentrations in showers: implications for dermal exposure models. McKone TE J Expo Anal Environ Epidemiol; 1993; 3(3):339-65. PubMed ID: 8260842 [TBL] [Abstract][Full Text] [Related]
3. Use of a physiologically based pharmacokinetic model to identify exposures consistent with human biomonitoring data for chloroform. Tan YM; Liao KH; Conolly RB; Blount BC; Mason AM; Clewell HJ J Toxicol Environ Health A; 2006 Sep; 69(18):1727-56. PubMed ID: 16864423 [TBL] [Abstract][Full Text] [Related]
4. Chloroform exposure and the health risk associated with multiple uses of chlorinated tap water. Jo WK; Weisel CP; Lioy PJ Risk Anal; 1990 Dec; 10(4):581-5. PubMed ID: 2287785 [TBL] [Abstract][Full Text] [Related]
5. A distributed parameter physiologically-based pharmacokinetic model for dermal and inhalation exposure to volatile organic compounds. Roy A; Weisel CP; Lioy PJ; Georgopoulos PG Risk Anal; 1996 Apr; 16(2):147-60. PubMed ID: 8638037 [TBL] [Abstract][Full Text] [Related]
6. Estimates of cancer risk from chloroform exposure during showering in Taiwan. Kuo HW; Chiang TF; Lo II; Lai JS; Chan CC; Wang JD Sci Total Environ; 1998 Jul; 218(1):1-7. PubMed ID: 9718740 [TBL] [Abstract][Full Text] [Related]
7. Physiologically based pharmacokinetic modeling of the temperature-dependent dermal absorption of chloroform by humans following bath water exposures. Corley RA; Gordon SM; Wallace LA Toxicol Sci; 2000 Jan; 53(1):13-23. PubMed ID: 10653516 [TBL] [Abstract][Full Text] [Related]
8. Human respiratory uptake of chloroform and haloketones during showering. Xu X; Weisel CP J Expo Anal Environ Epidemiol; 2005 Jan; 15(1):6-16. PubMed ID: 15138448 [TBL] [Abstract][Full Text] [Related]
9. Systemic uptake and clearance of chloroform by hairless rats following dermal exposure. I. Brief exposure to aqueous solutions. Islam MS; Zhao L; Zhou J; Dong L; McDougal JN; Flynn GL Risk Anal; 1996 Jun; 16(3):349-57. PubMed ID: 8693161 [TBL] [Abstract][Full Text] [Related]
10. A physiologically based pharmacokinetic assessment of tetrachloroethylene in groundwater for a bathing and showering determination. Rao HV; Brown DR Risk Anal; 1993 Feb; 13(1):37-49. PubMed ID: 8451459 [TBL] [Abstract][Full Text] [Related]
11. Routes of chloroform exposure and body burden from showering with chlorinated tap water. Jo WK; Weisel CP; Lioy PJ Risk Anal; 1990 Dec; 10(4):575-80. PubMed ID: 2287784 [TBL] [Abstract][Full Text] [Related]
12. Effect of water temperature on dermal exposure to chloroform. Gordon SM; Wallace LA; Callahan PJ; Kenny DV; Brinkman MC Environ Health Perspect; 1998 Jun; 106(6):337-45. PubMed ID: 9618350 [TBL] [Abstract][Full Text] [Related]
13. Dermal uptake of chloroform and haloketones during bathing. Xu X; Weisel CP J Expo Anal Environ Epidemiol; 2005 Jul; 15(4):289-96. PubMed ID: 15316574 [TBL] [Abstract][Full Text] [Related]
14. PBTK modeling demonstrates contribution of dermal and inhalation exposure components to end-exhaled breath concentrations of naphthalene. Kim D; Andersen ME; Chao YC; Egeghy PP; Rappaport SM; Nylander-French LA Environ Health Perspect; 2007 Jun; 115(6):894-901. PubMed ID: 17589597 [TBL] [Abstract][Full Text] [Related]
15. Ingestion, inhalation, and dermal exposures to chloroform and trichloroethene from tap water. Weisel CP; Jo WK Environ Health Perspect; 1996 Jan; 104(1):48-51. PubMed ID: 8834861 [TBL] [Abstract][Full Text] [Related]
16. Effect of PBPK model structure on interpretation of in vivo human aqueous dermal exposure trials. Norman AM; Kissel JC; Shirai JH; Smith JA; Stumbaugh KL; Bunge AL Toxicol Sci; 2008 Jul; 104(1):210-7. PubMed ID: 18381354 [TBL] [Abstract][Full Text] [Related]
17. Relative source allocation of TDI to drinking water for derivation of a criterion for chloroform: a Monte-Carlo and multi-exposure assessment. Niizuma S; Matsui Y; Ohno K; Itoh S; Matsushita T; Shirasaki N Regul Toxicol Pharmacol; 2013 Oct; 67(1):98-107. PubMed ID: 23867354 [TBL] [Abstract][Full Text] [Related]
18. Utility of real time breath analysis and physiologically based pharmacokinetic modeling to determine the percutaneous absorption of methyl chloroform in rats and humans. Poet TS; Thrall KD; Corley RA; Hui X; Edwards JA; Weitz KK; Maibach HI; Wester RC Toxicol Sci; 2000 Mar; 54(1):42-51. PubMed ID: 10746930 [TBL] [Abstract][Full Text] [Related]
19. Chloroform: exposure estimation, hazard characterization, and exposure-response analysis. Meek ME; Beauchamp R; Long G; Moir D; Turner L; Walker M J Toxicol Environ Health B Crit Rev; 2002; 5(3):283-334. PubMed ID: 12162870 [TBL] [Abstract][Full Text] [Related]
20. A Bayesian population PBPK model for multiroute chloroform exposure. Yang Y; Xu X; Georgopoulos PG J Expo Sci Environ Epidemiol; 2010 Jun; 20(4):326-41. PubMed ID: 19471319 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]