BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 845168)

  • 1. Increasing activity of enzymes on pathway of triacylglycerol synthesis during adipose conversion of 3T3 cells.
    Kuri-Harcuch W; Green H
    J Biol Chem; 1977 Mar; 252(6):2158-60. PubMed ID: 845168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adipose conversion of 3T3 cells depends on a serum factor.
    Kuri-Harcuch W; Green H
    Proc Natl Acad Sci U S A; 1978 Dec; 75(12):6107-9. PubMed ID: 282628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Participation of one isozyme of cytosolic glycerophosphate dehydrogenase in the adipose conversion of 3T3 cells.
    Wise LS; Green H
    J Biol Chem; 1979 Jan; 254(2):273-5. PubMed ID: 762059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interruption of the adipose conversion of 3T3 cells by biotin deficiency: differentiation without triglyceride accumulation.
    Kuri-Harcuch W; Wise LS; Green H
    Cell; 1978 May; 14(1):53-9. PubMed ID: 667936
    [No Abstract]   [Full Text] [Related]  

  • 5. An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion.
    Green H; Kehinde O
    Cell; 1975 May; 5(1):19-27. PubMed ID: 165899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dihydrocytochalasin B promotes adipose conversion of 3T3 cells.
    Pairault J; Lasnier F
    Biol Cell; 1987; 61(3):149-54. PubMed ID: 2965943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of the adipose conversion of suspended 3T3 cells by using glycerophosphate dehydrogenase as differentiation marker.
    Pairault J; Green H
    Proc Natl Acad Sci U S A; 1979 Oct; 76(10):5138-42. PubMed ID: 291926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of the peroxisomal glycerolipid-synthesizing enzymes during differentiation of 3T3-L1 adipocytes. Role in triacylglycerol synthesis.
    Hajra AK; Larkins LK; Das AK; Hemati N; Erickson RL; MacDougald OA
    J Biol Chem; 2000 Mar; 275(13):9441-6. PubMed ID: 10734090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of growth hormone receptors in relation to the adipose conversion of 3T3 cells.
    Nixon T; Green H
    J Cell Physiol; 1983 Jun; 115(3):291-6. PubMed ID: 6304120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective changes in enzymes of the sn-glycerol 3-phosphate and dihydroxyacetone-phosphate pathways of triacylglycerol biosynthesis during differentiation of 3T3-L1 preadipocytes.
    Coleman RA; Bell RM
    J Biol Chem; 1980 Aug; 255(16):7681-7. PubMed ID: 6156941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of acylation stimulating protein on the triacylglycerol synthetic pathway of human adipose tissue.
    Yasruel Z; Cianflone K; Sniderman AD; Rosenbloom M; Walsh M; Rodriguez MA
    Lipids; 1991 Jul; 26(7):495-9. PubMed ID: 1943492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity of preadipose 3T3 cells to growth hormone.
    Morikawa M
    J Cell Physiol; 1986 Aug; 128(2):293-8. PubMed ID: 3733890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the activity and synthesis of malic enzyme in 3T3-L1 cells.
    Goodridge AG; Fisch JE; Glynias MJ
    Arch Biochem Biophys; 1984 Jan; 228(1):54-63. PubMed ID: 6198959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular identification of microsomal acyl-CoA:glycerol-3-phosphate acyltransferase, a key enzyme in de novo triacylglycerol synthesis.
    Cao J; Li JL; Li D; Tobin JF; Gimeno RE
    Proc Natl Acad Sci U S A; 2006 Dec; 103(52):19695-700. PubMed ID: 17170135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triacylglycerol synthesis in isolated fat cells. Evidence that the sn-glycerol-3-phosphate and dihydroxyacetone phosphate acyltransferase activities are dual catalytic functions of a single microsomal enzyme.
    Schlossman DM; Bell RM
    J Biol Chem; 1976 Sep; 251(18):5738-44. PubMed ID: 9398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA synthesis and cell division related to adipose differentiation of 3T3 cells.
    Kuri-Harcuch W; Marsch-Moreno M
    J Cell Physiol; 1983 Jan; 114(1):39-44. PubMed ID: 6826660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Commitment of adipocyte differentiation in 3T3 cells is inhibited by retinoic acid, and the expression of lipogenic enzymes is modulated through cytoskeleton stabilization.
    Castro-Muñozledo F; Marsch-Moreno M; Beltràn-Langarica A; Kuri-Harcuch W
    Differentiation; 1987; 36(3):211-9. PubMed ID: 3449400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between adipose polyamine concentrations and triacylglycerol synthetic enzymes in lean and obese Zucker rats.
    Jamdar SC; Cao WF; Samaniego E
    Enzyme Protein; 1996; 49(4):222-30. PubMed ID: 9030889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic AMP-mediated control of lipogenic enzyme synthesis during adipose differentiation of 3T3 cells.
    Spiegelman BM; Green H
    Cell; 1981 May; 24(2):503-10. PubMed ID: 6263498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of glycerol 3-phosphate and glycerophosphate acyltransferase in the nutritional control of hepatic triacylglycerol synthesis.
    Declercq PE; Debeer LJ; Mannaerts GP
    Biochem J; 1982 Apr; 204(1):247-56. PubMed ID: 7115324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.