These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 8452222)

  • 1. Identification of covalent adducts to protein sulfur nucleophiles by alkaline permethylation.
    Slaughter DE; Zheng J; Harriman S; Hanzlik RP
    Anal Biochem; 1993 Feb; 208(2):288-95. PubMed ID: 8452222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of epoxide- and quinone-derived bromobenzene adducts to protein sulfur nucleophiles.
    Slaughter DE; Hanzlik RP
    Chem Res Toxicol; 1991; 4(3):349-59. PubMed ID: 1912319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of quinone metabolites of naphthalene covalently bound to sulfur nucleophiles of proteins of murine Clara cells after exposure to naphthalene.
    Zheng J; Cho M; Jones AD; Hammock BD
    Chem Res Toxicol; 1997 Sep; 10(9):1008-14. PubMed ID: 9305583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dihydroxylated mercapturic acid metabolites of bromobenzene.
    Zheng J; Hanzlik RP
    Chem Res Toxicol; 1992; 5(4):561-7. PubMed ID: 1391623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a rat liver microsomal esterase as a target protein for bromobenzene metabolites.
    Rombach EM; Hanzlik RP
    Chem Res Toxicol; 1998 Mar; 11(3):178-84. PubMed ID: 9544615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bromobenzene 3,4-oxide alkylates histidine and lysine side chains of rat liver proteins in vivo.
    Bambal RB; Hanzlik RP
    Chem Res Toxicol; 1995; 8(5):729-35. PubMed ID: 7548756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bromo(monohydroxy)phenyl mercapturic acids. A new class of mercapturic acids from bromobenzene-treated rats.
    Zheng J; Hanzlik RP
    Drug Metab Dispos; 1992; 20(5):688-94. PubMed ID: 1358573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and evaluation of an electrochemical method for studying reactive phase-I metabolites: correlation to in vitro drug metabolism.
    Madsen KG; Olsen J; Skonberg C; Hansen SH; Jurva U
    Chem Res Toxicol; 2007 May; 20(5):821-31. PubMed ID: 17447796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation of metabolism, covalent binding and toxicity for a series of bromobenzene derivatives using rat liver slices in vitro.
    Fisher R; Brendel K; Hanzlik RP
    Chem Biol Interact; 1993 Sep; 88(2-3):191-8. PubMed ID: 8403079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the protein targets of the reactive metabolite of teucrin A in vivo in the rat.
    Druckova A; Mernaugh RL; Ham AJ; Marnett LJ
    Chem Res Toxicol; 2007 Oct; 20(10):1393-408. PubMed ID: 17892266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetaminophen-induced hepatotoxicity. Analysis of total covalent binding vs. specific binding to cysteine.
    Matthews AM; Roberts DW; Hinson JA; Pumford NR
    Drug Metab Dispos; 1996 Nov; 24(11):1192-6. PubMed ID: 8937852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decabromodiphenyl ether in the rat: absorption, distribution, metabolism, and excretion.
    Morck A; Hakk H; Orn U; Klasson Wehler E
    Drug Metab Dispos; 2003 Jul; 31(7):900-7. PubMed ID: 12814967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of in vivo potential for metabolic activation of drugs into chemically reactive intermediate: correlation of in vitro and in vivo generation of reactive intermediates and in vitro glutathione conjugate formation in rats and humans.
    Masubuchi N; Makino C; Murayama N
    Chem Res Toxicol; 2007 Mar; 20(3):455-64. PubMed ID: 17309281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of protein adduction derived from dauricine by alkaline permethylation.
    Xie H; Liu Y; Peng Y; Zhao D; Zheng J
    Anal Bioanal Chem; 2016 Jun; 408(15):4111-9. PubMed ID: 27071763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunochemical detection and identification of protein adducts of diclofenac in the small intestine of rats: possible role in allergic reactions.
    Ware JA; Graf ML; Martin BM; Lustberg LR; Pohl LR
    Chem Res Toxicol; 1998 Mar; 11(3):164-71. PubMed ID: 9544613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical and immunochemical comparison of protein adduct formation of four carboxylate drugs in rat liver and plasma.
    Bailey MJ; Dickinson RG
    Chem Res Toxicol; 1996; 9(3):659-66. PubMed ID: 8728513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methyl-donor deficiency due to chemically induced glutathione depletion.
    Lertratanangkoon K; Orkiszewski RS; Scimeca JM
    Cancer Res; 1996 Mar; 56(5):995-1005. PubMed ID: 8640792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analysis of alachlor protein adducts by gas chromatography-mass spectrometry.
    Lambert GR; Padgett WT; George MH; Kitchin KT; Nesnow S
    Anal Biochem; 1999 Mar; 268(2):289-96. PubMed ID: 10075819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disposition and covalent binding of diflunisal and diflunisal acyl glucuronide in the isolated perfused rat liver.
    Wang M; Dickinson RG
    Drug Metab Dispos; 1998 Feb; 26(2):98-104. PubMed ID: 9456294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.