These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 8452715)
1. Low-field strength magnetization transfer contrast imaging of the patellar cartilage. Koskinen SK; Komu ME Acta Radiol; 1993 Mar; 34(2):124-6. PubMed ID: 8452715 [TBL] [Abstract][Full Text] [Related]
2. [Magnetic resonance study of patellofemoral cartilage with a fat-suppressed T1-3D gradient-echo sequence: a comparison with other acquisition technics at medium field strength]. Cardone G; Minio Paluello GB; Lo Presti G; Gagliardo O; Gallucci M; Castrucci M Radiol Med; 1997 Sep; 94(3):150-6. PubMed ID: 9446117 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of patellar chondromalacia with MR: comparison between T2-weighted FSE SPIR and GE MTC. Macarini L; Perrone A; Murrone M; Marini S; Stefanelli M Radiol Med; 2004 Sep; 108(3):159-71. PubMed ID: 15343130 [TBL] [Abstract][Full Text] [Related]
4. Systematic variation of off-resonance prepulses for clinical magnetization transfer contrast imaging at 0.2, 1.5, and 3.0 tesla. Martirosian P; Boss A; Deimling M; Kiefer B; Schraml C; Schwenzer NF; Claussen CD; Schick F Invest Radiol; 2008 Jan; 43(1):16-26. PubMed ID: 18097273 [TBL] [Abstract][Full Text] [Related]
5. T2 quantitation of articular cartilage at 1.5 T. Maier CF; Tan SG; Hariharan H; Potter HG J Magn Reson Imaging; 2003 Mar; 17(3):358-64. PubMed ID: 12594727 [TBL] [Abstract][Full Text] [Related]
6. Repeatability of patellar cartilage thickness patterns in the living, using a fat-suppressed magnetic resonance imaging sequence with short acquisition time and three-dimensional data processing. Tieschky M; Faber S; Haubner M; Kolem H; Schulte E; Englmeier KH; Reiser M; Eckstein F J Orthop Res; 1997 Nov; 15(6):808-13. PubMed ID: 9497804 [TBL] [Abstract][Full Text] [Related]
7. [T2 relaxation time in patellar cartilage--global and regional reproducibility at 1.5 tesla and 3 tesla]. Glaser C; Horng A; Mendlik T; Weckbach S; Hoffmann RT; Wagner S; Raya JG; Horger W; Reiser M Rofo; 2007 Feb; 179(2):146-52. PubMed ID: 17262244 [TBL] [Abstract][Full Text] [Related]
8. Patellar cartilage lesions: comparison of magnetic resonance imaging and T2 relaxation-time mapping. Hannila I; Nieminen MT; Rauvala E; Tervonen O; Ojala R Acta Radiol; 2007 May; 48(4):444-8. PubMed ID: 17453527 [TBL] [Abstract][Full Text] [Related]
9. Incidental magnetization transfer contrast in fast spin-echo imaging of cartilage. Yao L; Gentili A; Thomas A J Magn Reson Imaging; 1996; 6(1):180-4. PubMed ID: 8851425 [TBL] [Abstract][Full Text] [Related]
10. [Locoregional deformation pattern of the patellar cartilage after different loading types - high-resolution 3D-MRI volumetry at 3 T in-vivo]. Horng A; Raya J; Zscharn M; König L; Notohamiprodjo M; Pietschmann M; Hoehne-Hückstädt U; Hermanns I; Glitsch U; Ellegast R; Hering K; Reiser M; Glaser C Rofo; 2011 May; 183(5):432-40. PubMed ID: 21113866 [TBL] [Abstract][Full Text] [Related]
11. In vivo biochemical 7.0 Tesla magnetic resonance: preliminary results of dGEMRIC, zonal T2, and T2* mapping of articular cartilage. Welsch GH; Mamisch TC; Hughes T; Zilkens C; Quirbach S; Scheffler K; Kraff O; Schweitzer ME; Szomolanyi P; Trattnig S Invest Radiol; 2008 Sep; 43(9):619-26. PubMed ID: 18708855 [TBL] [Abstract][Full Text] [Related]
12. Short echo time projection reconstruction MR imaging of cartilage: comparison with fat-suppressed spoiled GRASS and magnetization transfer contrast MR imaging. Brossmann J; Frank LR; Pauly JM; Boutin RD; Pedowitz RA; Haghighi P; Resnick D Radiology; 1997 May; 203(2):501-7. PubMed ID: 9114112 [TBL] [Abstract][Full Text] [Related]
13. Effect of gender on in vivo cartilage magnetic resonance imaging T2 mapping. Mosher TJ; Collins CM; Smith HE; Moser LE; Sivarajah RT; Dardzinski BJ; Smith MB J Magn Reson Imaging; 2004 Mar; 19(3):323-8. PubMed ID: 14994301 [TBL] [Abstract][Full Text] [Related]
14. Magnetization transfer contrast in magnetic resonance imaging. Balaban RS; Ceckler TL Magn Reson Q; 1992 Jun; 8(2):116-37. PubMed ID: 1622774 [TBL] [Abstract][Full Text] [Related]
15. Depth-dependent proton magnetization transfer in articular cartilage. Regatte RR; Akella SV; Reddy R J Magn Reson Imaging; 2005 Aug; 22(2):318-23. PubMed ID: 16028240 [TBL] [Abstract][Full Text] [Related]
16. A technique for 3D in vivo quantification of proton density and magnetization transfer coefficients of knee joint cartilage. Hohe J; Faber S; Stammberger T; Reiser M; Englmeier KH; Eckstein F Osteoarthritis Cartilage; 2000 Nov; 8(6):426-33. PubMed ID: 11069727 [TBL] [Abstract][Full Text] [Related]
17. Recovery of the menisci and articular cartilage of runners after cessation of exercise: additional aspects of in vivo investigation based on 3-dimensional magnetic resonance imaging. Kessler MA; Glaser C; Tittel S; Reiser M; Imhoff AB Am J Sports Med; 2008 May; 36(5):966-70. PubMed ID: 18287595 [TBL] [Abstract][Full Text] [Related]