BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 8452724)

  • 1. In vivo fluorescence microscopy of microcirculation in the renal cortex of mice. Part I. An experimental model for contrast media studies.
    Högström B; Rooth P; Sunnegårdh O; Hietala SO
    Acta Radiol; 1993 Mar; 34(2):168-73. PubMed ID: 8452724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo fluorescence microscopy of microcirculation in the renal cortex of mice. Part II. Effects of mannitol and contrast media infusions.
    Högström B; Rooth P; Sunnegårdh O; Hietala SO
    Acta Radiol; 1993 Mar; 34(2):174-8. PubMed ID: 8452725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo fluorescence microscopy of microcirculation in the renal cortex of mice. Part IV. Effects of mannitol and iohexol infusions after temporary renal ischemia.
    Högström B; Hietala SO; Rooth P
    Acta Radiol; 1993 Sep; 34(5):505-9. PubMed ID: 8369190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo fluorescence microscopy of microcirculation in the renal cortex of mice. Part III. Effects of mannitol and iohexol infusions after pretreatment with cyclosporin A.
    Högström B; Hietala SO; Rooth P
    Acta Radiol; 1993 Sep; 34(5):500-4. PubMed ID: 8369189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo fluorescence microscopy of microcirculation in the renal cortex of mice. Part V. Effects of mannitol and iohexol infusions in normal, obese/hyperglycemic and diabetic mice.
    Högström B; Hietala SO; Rooth P
    Acta Radiol; 1994 Mar; 35(2):176-81. PubMed ID: 8172747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of mannitol and iohexol infusions on the renal cortical blood flow in dehydrated mice.
    Högström B; Hietala SO; Rooth P
    Acta Radiol; 1996 Jul; 37(4):591-5. PubMed ID: 8688249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of isosmolar contrast media on the renal cortical blood flow in mice.
    Högström B; Hietala SO; Rooth P
    Acta Radiol; 1996 Jul; 37(4):587-90. PubMed ID: 8688248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathophysiology of renal hemodynamics and renal cortical microcirculation in a porcine model of elevated intra-abdominal pressure.
    Wauters J; Claus P; Brosens N; McLaughlin M; Malbrain M; Wilmer A
    J Trauma; 2009 Mar; 66(3):713-9. PubMed ID: 19276743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early hemodynamic changes at the microcirculatory level and effects of mannitol following focal cryogenic injury.
    Vinas FC; Dujovny M; Hodgkinson D
    Neurol Res; 1995 Dec; 17(6):465-8. PubMed ID: 8622804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnesium lithospermate B ameliorates renal cortical microperfusion in rats.
    Chen CG; Wang YP
    Acta Pharmacol Sin; 2006 Feb; 27(2):217-22. PubMed ID: 16412272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The endothelin receptor antagonist tezosentan improves renal microcirculation in a porcine model of endotoxemic shock.
    Fenhammar J; Andersson A; Frithiof R; Forestier J; Weitzberg E; Sollevi A; Hjelmqvist H
    Acta Anaesthesiol Scand; 2008 Nov; 52(10):1385-93. PubMed ID: 19025532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Renal toxicity of contrast media. Experimental study on dogs (author's transl)].
    Lélek I
    Rofo; 1976 Sep; 125(3):259-61. PubMed ID: 134954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protection against cyclosporine-induced impairment of renal microcirculation by verapamil in mice.
    Rooth P; Dawidson I; Diller K; Täljedal IB
    Transplantation; 1988 Feb; 45(2):433-7. PubMed ID: 3344549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term in vivo investigation of mouse cerebral microcirculation by fluorescence confocal microscopy in the area of focal ischemia.
    Tomita Y; Kubis N; Calando Y; Tran Dinh A; Méric P; Seylaz J; Pinard E
    J Cereb Blood Flow Metab; 2005 Jul; 25(7):858-67. PubMed ID: 15758950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of early and late intravenous norepinephrine infusion on cerebral perfusion, microcirculation, brain-tissue oxygenation, and edema formation in brain-injured rats.
    Kroppenstedt SN; Thomale UW; Griebenow M; Sakowitz OW; Schaser KD; Mayr PS; Unterberg AW; Stover JF
    Crit Care Med; 2003 Aug; 31(8):2211-21. PubMed ID: 12973182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of carbon dioxide versus ioxaglate in the rat kidney.
    Palm F; Bergqvist D; Carlsson PO; Hellberg O; Nyman R; Hansell P; Liss P
    J Vasc Interv Radiol; 2005 Feb; 16(2 Pt 1):269-74. PubMed ID: 15713929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of blood flow before and after embolization with use of fluorescent microspheres in an animal model.
    Patel TY; Hovsepian DM; Duncan JR
    J Vasc Interv Radiol; 2006 Jan; 17(1):103-11. PubMed ID: 16415139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arginine vasopressin compromises gut mucosal microcirculation in septic rats.
    Westphal M; Freise H; Kehrel BE; Bone HG; Van Aken H; Sielenkämper AW
    Crit Care Med; 2004 Jan; 32(1):194-200. PubMed ID: 14707579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renal cortical and medullary microvascular blood flow autoregulation in rat.
    Harrison-Bernard LM; Navar LG
    Kidney Int Suppl; 1996 Dec; 57():S23-9. PubMed ID: 8941918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Static magnetic fields affect capillary flow of red blood cells in striated skin muscle.
    Brix G; Strieth S; Strelczyk D; Dellian M; Griebel J; Eichhorn ME; Andrā W; Bellemann ME
    Microcirculation; 2008 Jan; 15(1):15-26. PubMed ID: 17952798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.