These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 8452886)

  • 21. Reticulo-reticular relationship during sleep and waking.
    Satoh T; Kanamori N
    Physiol Behav; 1975 Sep; 15(3):333-7. PubMed ID: 174145
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pontine cholinergic reticular mechanisms cause state-dependent changes in the discharge of parabrachial neurons.
    Gilbert KA; Lydic R
    Am J Physiol; 1994 Jan; 266(1 Pt 2):R136-50. PubMed ID: 8304534
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiunit activity in the mesencephalic reticular formation and septal area of freely moving newborn rat.
    Tamásy V; Korányi L; Lissák K
    Brain Res Bull; 1979; 4(6):715-9. PubMed ID: 230885
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Deprivation of "rapid" sleep by stimulation of the reticular formation of rats].
    Koval'zon VM; Tsibul'skiĭ VL
    Fiziol Zh SSSR Im I M Sechenova; 1978 Aug; 64(8):1082-8. PubMed ID: 211052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An attempt to analyze multi-unit recordings.
    Dill JC; Lockemann PC; Naka KI
    Electroencephalogr Clin Neurophysiol; 1970 Jan; 28(1):79-82. PubMed ID: 4188477
    [No Abstract]   [Full Text] [Related]  

  • 26. Control of thalamic transmission by corticofugal and ascending reticular pathways in the visual system.
    Singer W
    Physiol Rev; 1977 Jul; 57(3):386-420. PubMed ID: 196301
    [No Abstract]   [Full Text] [Related]  

  • 27. Neurotrophin-receptor immunoreactive neurons in mesopontine regions involved in the control of behavioral states.
    Yamuy J; Sampogna S; Chase MH
    Brain Res; 2000 Jun; 866(1-2):1-14. PubMed ID: 10825475
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neurotoxic lesion of the mesencephalic reticular formation and/or the posterior hypothalamus does not alter waking in the cat.
    Denoyer M; Sallanon M; Buda C; Kitahama K; Jouvet M
    Brain Res; 1991 Jan; 539(2):287-303. PubMed ID: 1675907
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improvement of learning by mesencephalic reticular stimulation during postlearning paradoxical sleep.
    Hennevin E; Hars B; Bloch V
    Behav Neural Biol; 1989 May; 51(3):291-306. PubMed ID: 2730495
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Multi-unit activity of subcortical structures during the waking-sleep cycle of the cat].
    Balzano E; Jeannerod M
    Electroencephalogr Clin Neurophysiol; 1970 Feb; 28(2):136-46. PubMed ID: 4189525
    [No Abstract]   [Full Text] [Related]  

  • 31. Acetylcholine as a brain state modulator: triggering and long-term regulation of REM sleep.
    Hobson JA; Datta S; Calvo JM; Quattrochi J
    Prog Brain Res; 1993; 98():389-404. PubMed ID: 8248527
    [No Abstract]   [Full Text] [Related]  

  • 32. Effects of reversible inactivation of the primate mesencephalic reticular formation. I. Hypermetric goal-directed saccades.
    Waitzman DM; Silakov VL; DePalma-Bowles S; Ayers AS
    J Neurophysiol; 2000 Apr; 83(4):2260-84. PubMed ID: 10758133
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of visual deafferentation on mesencephalic reticular activity in freely behaving cats.
    Kasamatsu T
    Exp Neurol; 1970 Nov; 29(2):251-67. PubMed ID: 5504470
    [No Abstract]   [Full Text] [Related]  

  • 34. Mesencephalic and bulbar reticular influences on somatosensory cortical neurons: short- and long-latency effects.
    Schieppati M; Mariotti M; Mohan Kumar V; Mancia M
    Sleep; 1983; 6(3):186-95. PubMed ID: 6622877
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synaptic linkage between mesencephalic and bulbo-pontine reticular structures as revealed by intracellular recording.
    Mancia M; Grantyn A; Broggi G; Margnelli M
    Brain Res; 1971 Oct; 33(2):491-4. PubMed ID: 5134933
    [No Abstract]   [Full Text] [Related]  

  • 36. Evidence for the presence of PS-OFF neurons in the ventromedial medulla oblongata of freely moving cats.
    Sakai K; Vanni-Mercier G; Jouvet M
    Exp Brain Res; 1983; 49(2):311-4. PubMed ID: 6832263
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms and models of REM sleep control.
    McCarley RW
    Arch Ital Biol; 2004 Jul; 142(4):429-67. PubMed ID: 15493547
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Modulation by the GABA of the ventro-oral-pontine reticular REM sleep-inducing neurons].
    Reinoso Suárez F
    An R Acad Nac Med (Madr); 2007; 124(2):397-411; discussion 411-3. PubMed ID: 18069603
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kainic acid lesions of gigantocellular tegmental field (FTG) neurons does not abolish REM sleep.
    Drucker-Colín R; Pedraza JG
    Brain Res; 1983 Aug; 272(2):387-91. PubMed ID: 6311343
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physiological studies of brainstem reticular connectivity. II. Responses of mPRF neurons to stimulation of mesencephalic and contralateral pontine reticular formation.
    McCarley RW; Ito K; Rodrigo-Angulo ML
    Brain Res; 1987 Apr; 409(1):111-27. PubMed ID: 3034376
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.