BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 8453472)

  • 1. Neuropeptide Y-immunoreactive terminals form axo-axonic synaptic arrangements in the substantia gelatinosa (lamina II) of the cat spinal dorsal horn.
    Doyle CA; Maxwell DJ
    Brain Res; 1993 Feb; 603(1):157-61. PubMed ID: 8453472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light- and electron-microscopic analysis of neuropeptide Y-immunoreactive profiles in the cat spinal dorsal horn.
    Doyle CA; Maxwell DJ
    Neuroscience; 1994 Jul; 61(1):107-21. PubMed ID: 7969886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postnatal maturation of primary afferent terminations in the substantia gelatinosa of the rat spinal cord. An electron microscopic study.
    Pignatelli D; Ribeiro-da-Silva A; Coimbra A
    Brain Res; 1989 Jul; 491(1):33-44. PubMed ID: 2765883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opioid neurons and pain modulation: an ultrastructural analysis of enkephalin in cat superficial dorsal horn.
    Glazer EJ; Basbaum AI
    Neuroscience; 1983 Oct; 10(2):357-76. PubMed ID: 6355893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative numbers of several types of synaptic connections in the substantia gelatinosa of the cat spinal cord.
    Duncan D; Morales R
    J Comp Neurol; 1978 Dec; 182(4):601-10. PubMed ID: 721970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GABA and glycine-like immunoreactivity at axoaxonic synapses on 1a muscle afferent terminals in the spinal cord of the rat.
    Watson AH; Bazzaz AA
    J Comp Neurol; 2001 May; 433(3):335-48. PubMed ID: 11298359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluoride-resistant acid phosphatase (FRAP)-positive afferent terminals make synaptic contact with interneuronal soma in the substantia gelatinosa of the mouse spinal dorsal horn.
    Hiura A; Nasu F; Kuwahara M; Ishizuka H
    Okajimas Folia Anat Jpn; 1997 Aug; 74(2-3):109-13. PubMed ID: 9341296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light microscopic and ultrastructural analysis of GABA-immunoreactive profiles in the monkey spinal cord.
    Carlton SM; Hayes ES
    J Comp Neurol; 1990 Oct; 300(2):162-82. PubMed ID: 2258461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axoaxonic synapses on terminals of group II muscle spindle afferent axons in the spinal cord of the cat.
    Maxwell DJ; Riddell JS
    Eur J Neurosci; 1999 Jun; 11(6):2151-9. PubMed ID: 10336683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructural studies on peptides in the dorsal horn of the spinal cord--I. Co-existence of galanin with other peptides in primary afferents in normal rats.
    Zhang X; Nicholas AP; Hökfelt T
    Neuroscience; 1993 Nov; 57(2):365-84. PubMed ID: 7509467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructural analysis of noradrenergic nerve terminals in the cat lumbosacral spinal dorsal horn: a dopamine-beta-hydroxylase immunocytochemical study.
    Doyle CA; Maxwell DJ
    Brain Res; 1991 Nov; 563(1-2):329-33. PubMed ID: 1786546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GABA- and glycine-like immunoreactivity in axons and dendrites contacting the central terminals of rapidly adapting glabrous skin afferents in rat spinal cord.
    Watson AH
    J Comp Neurol; 2003 Sep; 464(4):497-510. PubMed ID: 12900920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noradrenergic axon terminals in the substantia gelatinosa of the rat spinal cord: an electron-microscopic study using glyoxylic acid-potassium permanganate fixation.
    Satoh K; Kashiba A; Kimura H; Maeda T
    Cell Tissue Res; 1982; 222(2):359-78. PubMed ID: 7083306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrastructural evidence for a pre- and postsynaptic localization of full-length trkB receptors in substantia gelatinosa (lamina II) of rat and mouse spinal cord.
    Salio C; Lossi L; Ferrini F; Merighi A
    Eur J Neurosci; 2005 Oct; 22(8):1951-66. PubMed ID: 16262634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrastructural studies on peptides in the dorsal horn of the rat spinal cord--IV. Effects of peripheral axotomy with special reference to neuropeptide Y and vasoactive intestinal polypeptide/peptide histidine isoleucine.
    Zhang X; Bean AJ; Wiesenfeld-Hallin Z; Hökfelt T
    Neuroscience; 1995 Feb; 64(4):917-41. PubMed ID: 7753387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catecholaminergic innervation of the spinal dorsal horn: a correlated light and electron microscopic analysis of tyrosine hydroxylase-immunoreactive fibres in the cat.
    Doyle CA; Maxwell DJ
    Neuroscience; 1991; 45(1):161-76. PubMed ID: 1684413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dendroaxonic synapses in the substantia gelatinosa glomeruli of the spinal trigeminal nucleus of the cat.
    Gobell S
    J Comp Neurol; 1976 May; 167(2):165-76. PubMed ID: 932238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The action of capsaicin on primary afferent central terminals in the superficial dorsal horn of newborn mice.
    Hiura A; López Villalobos E; Ishizuka H
    Arch Histol Cytol; 1990 Oct; 53(4):455-66. PubMed ID: 2268478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Periterminal synaptology of dorsal root glomerular terminals in the substantia gelatinosa of the spinal cord in the rhesus monkey.
    Knyihar-Csillik E; Csillik B; Rakic P
    J Comp Neurol; 1982 Oct; 210(4):376-99. PubMed ID: 7142448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunocytochemical localization of substance P in the spinal trigeminal nucleus of the rat: a light and electron microscopic study.
    Priestley JV; Somogyi P; Cuello AC
    J Comp Neurol; 1982 Oct; 211(1):31-49. PubMed ID: 6184386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.