BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 8453761)

  • 21. Protein gene-product 9.5 in developing mouse circumvallate papilla: comparison with neuron-specific enolase and calcitonin gene-related peptide.
    Wakisaka S; Miyawaki Y; Youn SH; Kato J; Kurisu K
    Anat Embryol (Berl); 1996 Oct; 194(4):365-72. PubMed ID: 8896700
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of "Pinceaux" formations and dendritic translocation of climbing fibers during the acquisition of the balance between glutamatergic and gamma-aminobutyric acidergic inputs in developing Purkinje cells.
    Sotelo C
    J Comp Neurol; 2008 Jan; 506(2):240-62. PubMed ID: 18022955
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calcitonin gene-related peptide in afferents to the cat's cerebellar cortex: distribution and origin.
    Bishop GA
    J Comp Neurol; 1992 Aug; 322(2):201-12. PubMed ID: 1522249
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synaptic 5'-nucleotidase is transient and indicative of climbing fiber plasticity during the postnatal development of rat cerebellum.
    Schoen SW; Graeber MB; Tóth L; Kreutzberg GW
    Brain Res Dev Brain Res; 1991 Jul; 61(1):125-38. PubMed ID: 1914153
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calcitonin gene-related peptide neurons innervating the canine digestive system.
    Sternini C; De Giorgio R; Furness JB
    Regul Pept; 1992 Nov; 42(1-2):15-26. PubMed ID: 1475404
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The cerebellum of the frog Rana ridibunda. An electron microscopic study.
    González A; Muñoz M; Carrato A
    J Hirnforsch; 1983; 24(6):633-43. PubMed ID: 6672096
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Calcitonin gene-related peptide in the developing and aging thymus. An immunocytochemical study.
    Bulloch K; Hausman J; Radojcic T; Short S
    Ann N Y Acad Sci; 1991; 621():218-28. PubMed ID: 1859088
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of olivocerebellar fibers in the clawed toad, Xenopus laevis: a light and electron microscopical HRP study.
    van der Linden JA; ten Donkelaar HJ; De Boer-van Huizen R
    J Comp Neurol; 1990 Mar; 293(2):236-52. PubMed ID: 19189714
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neurogenesis of the climbing fibers in the human cerebellum: a Golgi study.
    Marin-Padilla M
    J Comp Neurol; 1985 May; 235(1):82-96. PubMed ID: 3989006
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Compartmental organization of Purkinje cells in the mature and developing mouse cerebellum as revealed by an olfactory marker protein-lacZ transgene.
    Nunzi MG; Grillo M; Margolis FL; Mugnaini E
    J Comp Neurol; 1999 Feb; 404(1):97-113. PubMed ID: 9886028
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mossy Fibers Terminate Directly Within Purkinje Cell Zones During Mouse Development.
    Sillitoe RV
    Cerebellum; 2016 Feb; 15(1):14-17. PubMed ID: 26255945
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Histological and Molecular Characterization of the Inferior Olivary Nucleus and Climbing Fibers in the Goldfish,
    Ikenaga T; Morita S; Finger TE
    Zoolog Sci; 2023 Apr; 40(2):141-150. PubMed ID: 37042693
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distribution of calcitonin gene-related peptide- and neuropeptide Y-like immunoreactivity in the trigeminal ganglion and mesencephalic trigeminal nucleus of the cat.
    Lazarov N
    Acta Histochem; 1995 Apr; 97(2):213-23. PubMed ID: 7660738
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The pathogenesis of parvovirus-induced cerebellar hypoplasia in the Syrian hamster, Mesocricetus auratus. Fluorescent antibody, foliation, cytoarchitectonic, Golgi and electron microscopic studies.
    Oster-Granite ML; Herndon RM
    J Comp Neurol; 1976 Oct; 169(4):481-521. PubMed ID: 789416
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Why run parallel fibers parallel? Teleostean Purkinje cells as possible coincidence detectors, in a timing device subserving spatial coding of temporal differences.
    Meek J
    Neuroscience; 1992; 48(2):249-83. PubMed ID: 1603322
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Subtype switching of vesicular glutamate transporters at parallel fibre-Purkinje cell synapses in developing mouse cerebellum.
    Miyazaki T; Fukaya M; Shimizu H; Watanabe M
    Eur J Neurosci; 2003 Jun; 17(12):2563-72. PubMed ID: 12823463
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anatomical, physiological and biochemical studies of the cerebellum from mutant mice. II. Morphological study of cerebellar cortical neurons and circuits in the weaver mouse.
    Sotelo C
    Brain Res; 1975 Aug; 94(1):19-44. PubMed ID: 1148865
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of the olivocerebellar projection in the rat: II. Matching of the developmental compartmentations of the cerebellum and inferior olive through the projection map.
    Wassef M; Cholley B; Heizmann CW; Sotelo C
    J Comp Neurol; 1992 Sep; 323(4):537-50. PubMed ID: 1430321
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Early development of cerebellar afferent systems that contain corticotropin-releasing factor.
    Cummings SL; Young WS; King JS
    J Comp Neurol; 1994 Dec; 350(4):534-49. PubMed ID: 7890829
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Topological relationship between corticotropin-releasing factor-immunoreactive cerebellar afferents and tyrosine hydroxylase-immunoreactive Purkinje cells in a hereditary ataxic mutant, rolling mouse Nagoya.
    Sawada K; Sakata-Haga H; Hisano S; Fukui Y
    Neuroscience; 2001; 102(4):925-35. PubMed ID: 11182254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.