These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 8454077)

  • 1. Reversal of the post-ischaemic changes in skeletal muscle blood flow and viability by a novel inhibitor of lipid peroxidation.
    Homer-Vanniasinkam S; Hardy SC; Gough MJ
    Eur J Vasc Surg; 1993 Jan; 7(1):41-5. PubMed ID: 8454077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The triphasic pattern of skeletal muscle blood flow in reperfusion injury: an experimental model with implications for surgery on the acutely ischaemic lower limb.
    Hardy SC; Homer-Vanniasinkam S; Gough MJ
    Eur J Vasc Surg; 1990 Dec; 4(6):587-90. PubMed ID: 2279568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skeletal muscle ischaemia-reperfusion injury: further characterisation of a rodent model.
    Homer-Vanniasinkam S; Rowlands TE; Hardy SC; Gough MJ
    Eur J Vasc Endovasc Surg; 2001 Dec; 22(6):523-7. PubMed ID: 11735201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of free radical scavenging on skeletal muscle blood flow during postischaemic reperfusion.
    Hardy SC; Homer-Vanniasinkam S; Gough MJ
    Br J Surg; 1992 Dec; 79(12):1289-92. PubMed ID: 1486420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of lipid mediators in the pathogenesis of skeletal muscle infarction and oedema during reperfusion after ischaemia.
    Homer-Vanniasinkam S; Gough MJ
    Br J Surg; 1994 Oct; 81(10):1500-3. PubMed ID: 7820485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do prostaglandins have a salutary role in skeletal muscle ischaemia-reperfusion injury?
    Rowlands TE; Gough MJ; Homer-Vanniasinkam S
    Eur J Vasc Endovasc Surg; 1999 Nov; 18(5):439-44. PubMed ID: 10610833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the endothelin receptor antagonist Bosentan on ischaemia/reperfusion injury in rat skeletal muscle.
    Herbert KJ; Hickey MJ; Lepore DA; Knight KR; Morrison WA; Stewart AG
    Eur J Pharmacol; 2001 Jul; 424(1):59-67. PubMed ID: 11470261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacological manipulation of gastrocnemius muscle blood flow in an animal model of reperfusion injury.
    Hardy SC; Gough MJ
    J Biomed Eng; 1991 May; 13(3):263-6. PubMed ID: 1908031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of neutrophil depletion and elastase inhibition in modifying skeletal muscle reperfusion injury.
    Crinnion JN; Homer-Vanniasinkam S; Hatton R; Parkin SM; Gough MJ
    Cardiovasc Surg; 1994 Dec; 2(6):749-53. PubMed ID: 7858993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of thromboxane A2 in muscle injury following ischaemia.
    Homer-Vanniasinkam S; Crinnion JN; Gough MJ
    Br J Surg; 1994 Jul; 81(7):974-6. PubMed ID: 7922088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of dibutyryl cyclic adenosine monophosphate on skeletal muscle reperfusion injury in the rat.
    Ohshima T; Yabe Y; Ishiguro N; Iwata H
    Eur Surg Res; 1997; 29(6):438-46. PubMed ID: 9405966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protective effect of a 21-aminosteroid against hemorrhage-induced ischemia-reperfusion injury in the rat stomach: role of lipid peroxidation.
    Cross JM; Smith GS; Russell DH; Nguyen PH; Mercer DW; Barreto JC; Miller TA
    Shock; 1995 May; 3(5):385-90. PubMed ID: 7648342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prostacyclin analogue (OP-2507) attenuates hepatic microcirculatory derangement, energy depletion, and lipid peroxidation in a rat model of reperfusion injury.
    Chen HM; Chen MF; Shyr MH
    J Surg Res; 1998 Dec; 80(2):333-8. PubMed ID: 9878334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of reperfusion injury in rat skeletal muscle following administration of cinnamophilin, a novel dual inhibitor of thromboxane synthase and thromboxane A2 receptor.
    Cheng HT; Chang H
    Thorac Cardiovasc Surg; 1995 Apr; 43(2):73-6. PubMed ID: 7545331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transgenic expression of human complement regulators reduces skeletal muscle ischaemia/reperfusion injury in mice.
    Knight KR; Shinkel TA; Cowan PJ; Romeo-Meeuw R; d'Apice AJ; Morrison WA
    Clin Sci (Lond); 2005 Jan; 108(1):47-53. PubMed ID: 15341509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased ischemia-reperfusion blood flow impairs the skeletal muscle contractile function.
    Ikebe K; Kato T; Yamaga M; Hirose J; Tsuchida T; Takagi K
    J Surg Res; 2001 Jul; 99(1):1-6. PubMed ID: 11421597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protection of rat heart from ischaemia-reperfusion injury by the 21-aminosteroid U-74389G.
    Perna AM; Liguori P; Bonacchi M; Laino GM; Nediani C; Fiorillo C; Lunghi B; Zecchi-Orlandini S; Formigli L; Ibba-Manneschi L; Nassi P
    Pharmacol Res; 1996; 34(1-2):25-31. PubMed ID: 8981552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reperfusion injury in skeletal muscle: interaction of osmotic and colloid-osmotic pressure in the initial reperfusate for oedema prevention.
    Matheis G; Beyersdorf F; Hanselmann A; Unger A; Wildhirt A; Krüger S; Zimmer G; Satter P
    Cardiovasc Surg; 1994 Dec; 2(6):725-36. PubMed ID: 7858991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Allopurinol--a free radical scavenger--reduces reperfusion injury in skeletal muscle.
    Oredsson S; Plate G; Qvarfordt P
    Eur J Vasc Surg; 1991 Feb; 5(1):47-52. PubMed ID: 2009984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microcirculatory effects of experimental acute limb ischaemia-reperfusion.
    Dammers R; Wehrens XH; oude Egbrink MG; Slaaf DW; Kurvers HA; Ramsay G
    Br J Surg; 2001 Jun; 88(6):816-24. PubMed ID: 11412251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.