These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

39 related articles for article (PubMed ID: 845481)

  • 1. Evidence that decreased cardiac output is not the stimulus to sodium retention during acute constriction of the vena cava.
    Migdal S; Alexander EA; Levinsky NG
    J Lab Clin Med; 1977 Apr; 89(4):809-16. PubMed ID: 845481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proximal tubular function in dogs with thoracic caval constriction.
    Auld RB; Alexander EA; Levinsky NG
    J Clin Invest; 1971 Oct; 50(10):2150-8. PubMed ID: 5116206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypertonic-hyperoncotic solutions improve cardiac function in children after open-heart surgery.
    Schroth M; Plank C; Meissner U; Eberle KP; Weyand M; Cesnjevar R; Dötsch J; Rascher W
    Pediatrics; 2006 Jul; 118(1):e76-84. PubMed ID: 16751617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renal blockade to angiotensin II in acute and chronic sodium-retaining states.
    Slick GL; DiBona GF; Kaloyanides GJ
    J Pharmacol Exp Ther; 1975 Nov; 195(2):185-93. PubMed ID: 1185590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endogenous atrial natriuretic factor in dogs with caval constriction.
    Freeman RH; Villarreal D; Vari RC; Verburg KM
    Circ Res; 1987 Oct; 61(4 Pt 2):I96-9. PubMed ID: 2958169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of chemical sympathectomy on renal hydroelectrolytic handling in dogs with chronic caval constriction.
    Fajardo J; López-Novoa JM
    Clin Physiol Biochem; 1986; 4(4):252-6. PubMed ID: 3530590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A right ventricular pressure waveform based pulse contour cardiac output algorithm in canines.
    Karamanoglu M; Bennett TD
    Cardiovasc Eng; 2006 Sep; 6(3):83-92. PubMed ID: 16960760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Failure to demonstrate a humoral mechanism in the antinatriuresis of acute caval constriction.
    Kaloyanides GJ; Azer M
    J Clin Invest; 1972 May; 51(5):1297-300. PubMed ID: 5020437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of renal bicarbonate reabsorption by extracellular volume.
    Kurtzman NA
    J Clin Invest; 1970 Mar; 49(3):586-95. PubMed ID: 5415684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Recombinant human brain natriuretic peptide on the cardiac hemodynamics and renal function in dogs with heart failure].
    Xu XW; Zeng GY; Yang Y; Liu HX
    Yao Xue Xue Bao; 2002 Oct; 37(10):758-62. PubMed ID: 12567856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of renal denervation on the antinatriuresis of caval constriction.
    Azer M; Gannon R; Kaloyanides GJ
    Am J Physiol; 1972 Mar; 222(3):611-6. PubMed ID: 5022671
    [No Abstract]   [Full Text] [Related]  

  • 12. Mechanism of effect of thoracic inferior vena cava constriction on renal water excretion.
    Anderson RJ; Cadnapaphornchai P; Harbottle JA; McDonald KM; Schrier RW
    J Clin Invest; 1974 Dec; 54(6):1473-9. PubMed ID: 4436443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of vena caval banding in experimentally induced multiple portosystemic shunts in dogs.
    Butler-Howe LM; Boothe HW; Boothe DM; Laine GA; Calvin JA
    Am J Vet Res; 1993 Oct; 54(10):1774-83. PubMed ID: 8250407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resuscitation from bupivacaine-induced cardiovascular toxicity during partial inferior vena cava occlusion.
    Kasten GW; Martin ST
    Anesth Analg; 1986 Apr; 65(4):341-4. PubMed ID: 3954108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inappropriate drinking and secretion of vasopressin after caval constriction in dogs.
    Thrasher TN; Moore-Gillon M; Wade CE; Keil LC; Ramsay DJ
    Am J Physiol; 1983 Jun; 244(6):R850-6. PubMed ID: 6305215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficacy of right ventricular unloading during right coronary artery occlusion in an experimental model.
    Connolly MW; Lim KH; Rose DM; Tan IP; Grossi EA; Baumann GF; Jacobowitz IJ; Cunningham JN
    Surgery; 1986 Aug; 100(2):143-9. PubMed ID: 3738746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemodynamics and oxygen uptake below and above aortic occlusion during crossclamping of the thoracic aorta and sodium nitroprusside infusion.
    Gregoretti S; Gelman S; Henderson T; Bradley EL
    J Thorac Cardiovasc Surg; 1990 Dec; 100(6):830-6. PubMed ID: 2246905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Determinants of the diastolic pressure-volume relationship of the left ventricle: significance of myocardial ischemia and vena cava occlusion].
    Hess OM; Osakada G; Lavelle JF; Gallagher KP; Kemper WS; Ross J
    Schweiz Med Wochenschr; 1981 Nov; 111(45):1711-3. PubMed ID: 7313641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An experimental study of the hemodynamics of occlusion of the inferior vena cava.
    Little JM; Goodman AH
    Surg Gynecol Obstet; 1969 Apr; 128(4):801-5. PubMed ID: 5776136
    [No Abstract]   [Full Text] [Related]  

  • 20. Sodium retention in dogs with experimental cirrhosis following removal of ascites by continuous peritoneovenous shunting.
    Levy M; Wexler MJ; McCaffrey C
    J Lab Clin Med; 1979 Dec; 94(6):933-46. PubMed ID: 501214
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.