These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8456112)

  • 41. An analysis of the Maxi-K+ (KCa) channel in cultured human corporal smooth muscle cells.
    Fan SF; Brink PR; Melman A; Christ GJ
    J Urol; 1995 Mar; 153(3 Pt 1):818-25. PubMed ID: 7861546
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Patch-clamp studies of slow potential-sensitive potassium channels in longitudinal smooth muscle cells of rabbit jejunum.
    Benham CD; Bolton TB
    J Physiol; 1983 Jul; 340():469-86. PubMed ID: 6310100
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of an ultrarapid delayed rectifier potassium channel involved in canine atrial repolarization.
    Yue L; Feng J; Li GR; Nattel S
    J Physiol; 1996 Nov; 496 ( Pt 3)(Pt 3):647-62. PubMed ID: 8930833
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A newly identified Ca2+ dependent K+ channel in the smooth muscle membrane of single cells dispersed from the rabbit portal vein.
    Inoue R; Okabe K; Kitamura K; Kuriyama H
    Pflugers Arch; 1986 Feb; 406(2):138-43. PubMed ID: 2421236
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Voltage-dependent calcium and potassium conductances in striated muscle fibers from the scorpion, Centruroides sculpturatus.
    Gilly WF; Scheuer T
    J Membr Biol; 1993 Jun; 134(2):155-67. PubMed ID: 8411118
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Clustered distribution of calcium sensitivities: an indication of hetero-tetrameric gating components in Ca2+-activated K+ channels reconstituted from avian nasal gland cells.
    Wu JV; Shuttleworth TJ; Stampe P
    J Membr Biol; 1996 Dec; 154(3):275-82. PubMed ID: 8952957
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An ATP-sensitive potassium conductance in rabbit arterial endothelial cells.
    Katnik C; Adams DJ
    J Physiol; 1995 Jun; 485 ( Pt 3)(Pt 3):595-606. PubMed ID: 7562603
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Voltage-gated potassium channels activated during action potentials in layer V neocortical pyramidal neurons.
    Kang J; Huguenard JR; Prince DA
    J Neurophysiol; 2000 Jan; 83(1):70-80. PubMed ID: 10634854
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Calcium-activated potassium channels from coronary smooth muscle reconstituted in lipid bilayers.
    Toro L; Vaca L; Stefani E
    Am J Physiol; 1991 Jun; 260(6 Pt 2):H1779-89. PubMed ID: 1711788
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regulation of small-conductance K+ channel in apical membrane of rat cortical collecting tubule.
    Wang WH; Schwab A; Giebisch G
    Am J Physiol; 1990 Sep; 259(3 Pt 2):F494-502. PubMed ID: 2396675
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Single voltage-gated K+ channels and their functions in small dorsal root ganglion neurones of rat.
    Safronov BV; Bischoff U; Vogel W
    J Physiol; 1996 Jun; 493 ( Pt 2)(Pt 2):393-408. PubMed ID: 8782104
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Artifactual expression of maxi-K+ channels in basolateral membrane of gallbladder epithelial cells.
    Copello J; Wehner F; Reuss L
    Am J Physiol; 1993 May; 264(5 Pt 1):C1128-36. PubMed ID: 8498476
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ion selectivity and gating of small conductance Ca(2+)-activated K+ channels in cultured rat adrenal chromaffin cells.
    Park YB
    J Physiol; 1994 Dec; 481 ( Pt 3)(Pt 3):555-70. PubMed ID: 7707225
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A calcium-activated potassium channel in growth plate chondrocytes: regulation by protein kinase A.
    Long KJ; Walsh KB
    Biochem Biophys Res Commun; 1994 Jun; 201(2):776-81. PubMed ID: 8003014
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Single-channel and functional characteristics of a KCa channel in vascular muscle membranes of human saphenous veins.
    Zhang H; Li P; Almassi GH; Nicolosi A; Olinger GN; Rusch NJ
    J Cardiovasc Pharmacol; 1996 Nov; 28(5):611-7. PubMed ID: 8945673
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of the large-conductance Ca-activated K channel in myocytes of rat saphenous artery.
    Catacuzzeno L; Pisconti DA; Harper AA; Petris A; Franciolini F
    Pflugers Arch; 2000 Dec; 441(2-3):208-18. PubMed ID: 11211105
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization and function of Ca(2+)-activated K+ channels in arteriolar muscle cells.
    Jackson WF; Blair KL
    Am J Physiol; 1998 Jan; 274(1):H27-34. PubMed ID: 9458848
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ionic currents and endothelin signaling in smooth muscle cells from rat renal resistance arteries.
    Gordienko DV; Clausen C; Goligorsky MS
    Am J Physiol; 1994 Feb; 266(2 Pt 2):F325-41. PubMed ID: 8141333
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Calcium-activated potassium channels in native endothelial cells from rabbit aorta: conductance, Ca2+ sensitivity and block.
    Rusko J; Tanzi F; van Breemen C; Adams DJ
    J Physiol; 1992 Sep; 455():601-21. PubMed ID: 1484364
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Regulation of the hyperpolarization-activated K+ channel in the lateral membrane of the cortical collecting duct.
    Wang WH
    J Gen Physiol; 1995 Jul; 106(1):25-43. PubMed ID: 7494137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.