These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 8456797)
1. Thermal stability and folding of the collagen triple helix and the effects of mutations in osteogenesis imperfecta on the triple helix of type I collagen. Bächinger HP; Morris NP; Davis JM Am J Med Genet; 1993 Jan; 45(2):152-62. PubMed ID: 8456797 [TBL] [Abstract][Full Text] [Related]
2. Amino acid sequence environment modulates the disruption by osteogenesis imperfecta glycine substitutions in collagen-like peptides. Yang W; Battineni ML; Brodsky B Biochemistry; 1997 Jun; 36(23):6930-5. PubMed ID: 9188687 [TBL] [Abstract][Full Text] [Related]
3. Nuclear magnetic resonance shows asymmetric loss of triple helix in peptides modeling a collagen mutation in brittle bone disease. Liu X; Kim S; Dai QH; Brodsky B; Baum J Biochemistry; 1998 Nov; 37(44):15528-33. PubMed ID: 9799516 [TBL] [Abstract][Full Text] [Related]
4. Predicting the clinical lethality of osteogenesis imperfecta from collagen glycine mutations. Bodian DL; Madhan B; Brodsky B; Klein TE Biochemistry; 2008 May; 47(19):5424-32. PubMed ID: 18412368 [TBL] [Abstract][Full Text] [Related]
5. Severity of osteogenesis imperfecta and structure of a collagen-like peptide modeling a lethal mutation site. Radmer RJ; Klein TE Biochemistry; 2004 May; 43(18):5314-23. PubMed ID: 15122897 [TBL] [Abstract][Full Text] [Related]
7. Destabilization of osteogenesis imperfecta collagen-like model peptides correlates with the identity of the residue replacing glycine. Beck K; Chan VC; Shenoy N; Kirkpatrick A; Ramshaw JA; Brodsky B Proc Natl Acad Sci U S A; 2000 Apr; 97(8):4273-8. PubMed ID: 10725403 [TBL] [Abstract][Full Text] [Related]
8. Synthetic collagen heterotrimers: structural mimics of wild-type and mutant collagen type I. Gauba V; Hartgerink JD J Am Chem Soc; 2008 Jun; 130(23):7509-15. PubMed ID: 18481852 [TBL] [Abstract][Full Text] [Related]
9. Mutations in the COL1A2 gene of type I collagen that result in nonlethal forms of osteogenesis imperfecta. Wenstrup RJ; Lever LW; Phillips CL; Quarles LD Am J Med Genet; 1993 Jan; 45(2):228-32. PubMed ID: 8456807 [TBL] [Abstract][Full Text] [Related]
10. Deletions and duplications of Gly-Xaa-Yaa triplet repeats in the triple helical domains of type I collagen chains disrupt helix formation and result in several types of osteogenesis imperfecta. Pace JM; Atkinson M; Willing MC; Wallis G; Byers PH Hum Mutat; 2001 Oct; 18(4):319-26. PubMed ID: 11668615 [TBL] [Abstract][Full Text] [Related]
11. Mutation analysis of COL1A1 and COL1A2 in patients diagnosed with osteogenesis imperfecta type I-IV. Pollitt R; McMahon R; Nunn J; Bamford R; Afifi A; Bishop N; Dalton A Hum Mutat; 2006 Jul; 27(7):716. PubMed ID: 16786509 [TBL] [Abstract][Full Text] [Related]
12. Stability related bias in residues replacing glycines within the collagen triple helix (Gly-Xaa-Yaa) in inherited connective tissue disorders. Persikov AV; Pillitteri RJ; Amin P; Schwarze U; Byers PH; Brodsky B Hum Mutat; 2004 Oct; 24(4):330-7. PubMed ID: 15365990 [TBL] [Abstract][Full Text] [Related]
13. Y-position cysteine substitution in type I collagen (alpha1(I) R888C/p.R1066C) is associated with osteogenesis imperfecta/Ehlers-Danlos syndrome phenotype. Cabral WA; Makareeva E; Letocha AD; Scribanu N; Fertala A; Steplewski A; Keene DR; Persikov AV; Leikin S; Marini JC Hum Mutat; 2007 Apr; 28(4):396-405. PubMed ID: 17206620 [TBL] [Abstract][Full Text] [Related]
14. A cysteine for glycine substitution at position 1017 in an alpha 1(I) chain of type I collagen in a patient with mild dominantly inherited osteogenesis imperfecta. Labhard ME; Wirtz MK; Pope FM; Nicholls AC; Hollister DW Mol Biol Med; 1988 Dec; 5(3):197-207. PubMed ID: 3244312 [TBL] [Abstract][Full Text] [Related]
15. Type I procollagen: the gene-protein system that harbors most of the mutations causing osteogenesis imperfecta and probably more common heritable disorders of connective tissue. Prockop DJ; Constantinou CD; Dombrowski KE; Hojima Y; Kadler KE; Kuivaniemi H; Tromp G; Vogel BE Am J Med Genet; 1989 Sep; 34(1):60-7. PubMed ID: 2683782 [TBL] [Abstract][Full Text] [Related]
16. Collagen model peptides: Sequence dependence of triple-helix stability. Persikov AV; Ramshaw JA; Brodsky B Biopolymers; 2000; 55(6):436-50. PubMed ID: 11304671 [TBL] [Abstract][Full Text] [Related]
17. Statistical thermodynamics of the collagen triple-helix/coil transition. Free energies for amino acid substitutions within the triple-helix. Doig AJ J Phys Chem B; 2008 Nov; 112(47):15029-33. PubMed ID: 18975885 [TBL] [Abstract][Full Text] [Related]
18. Chemical cleavage method for the detection of RNA base changes: experience in the application to collagen mutations in osteogenesis imperfecta. Bateman JF; Lamande SR; Hannagan M; Moeller I; Dahl HH; Cole WG Am J Med Genet; 1993 Jan; 45(2):233-40. PubMed ID: 8456808 [TBL] [Abstract][Full Text] [Related]
19. Nuclear magnetic resonance characterization of peptide models of collagen-folding diseases. Buevich A; Baum J Philos Trans R Soc Lond B Biol Sci; 2001 Feb; 356(1406):159-68. PubMed ID: 11260796 [TBL] [Abstract][Full Text] [Related]
20. Inherited disorders of collagen gene structure and expression. Byers PH Am J Med Genet; 1989 Sep; 34(1):72-80. PubMed ID: 2683783 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]