BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 8456975)

  • 1. Lysophosphatidylcholine modifies G protein-dependent signaling in porcine endothelial cells.
    Flavahan NA
    Am J Physiol; 1993 Mar; 264(3 Pt 2):H722-7. PubMed ID: 8456975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural course of the impairment of endothelium-dependent relaxations after balloon endothelium removal in porcine coronary arteries. Possible dysfunction of a pertussis toxin-sensitive G protein.
    Shimokawa H; Flavahan NA; Vanhoutte PM
    Circ Res; 1989 Sep; 65(3):740-53. PubMed ID: 2504508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pertussis toxin inhibits endothelium-dependent relaxations to certain agonists in porcine coronary arteries.
    Flavahan NA; Shimokawa H; Vanhoutte PM
    J Physiol; 1989 Jan; 408():549-60. PubMed ID: 2778738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of endothelium-dependent relaxations by phorbol myristate acetate in canine coronary arteries: role of a pertussis toxin-sensitive G-protein.
    Flavahan NA; Shimokawa H; Vanhoutte PM
    J Pharmacol Exp Ther; 1991 Jan; 256(1):50-5. PubMed ID: 1899121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guanosine 5'-O-(3-thiotriphosphate) causes endothelium-dependent, pertussis toxin-sensitive relaxations in porcine coronary arteries.
    Shibano T; Codina J; Birnbaumer L; Vanhoutte PM
    Biochem Biophys Res Commun; 1992 Nov; 189(1):324-9. PubMed ID: 1449486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impairment of G-protein-mediated signal transduction in the porcine coronary endothelium during rejection after heart transplantation.
    Perrault LP; Bidouard JP; Janiak P; Villeneuve N; Bruneval P; Vilaine JP; Vanhoutte PM
    Cardiovasc Res; 1999 Aug; 43(2):457-70. PubMed ID: 10536676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pertussis toxin reduces endothelium-dependent and independent responses to alpha-2- adrenergic stimulation in systemic canine arteries and veins.
    Miller VM; Flavahan NA; Vanhoutte PM
    J Pharmacol Exp Ther; 1991 Apr; 257(1):290-3. PubMed ID: 1850467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelium-derived hyperpolarizing factor mediated relaxations in pig coronary arteries do not involve Gi/o proteins.
    Ng KF; Leung SW; Man RY; Vanhoutte PM
    Acta Pharmacol Sin; 2008 Dec; 29(12):1419-24. PubMed ID: 19026160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidized low density lipoproteins inhibit relaxations of porcine coronary arteries. Role of scavenger receptor and endothelium-derived nitric oxide.
    Tanner FC; Noll G; Boulanger CM; Lüscher TF
    Circulation; 1991 Jun; 83(6):2012-20. PubMed ID: 2040054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. G-proteins and endothelial responses.
    Flavahan NA; Vanhoutte PM
    Blood Vessels; 1990; 27(2-5):218-29. PubMed ID: 2122922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of endothelial pertussis toxin-sensitive G protein function in atherosclerotic porcine coronary arteries.
    Shimokawa H; Flavahan NA; Vanhoutte PM
    Circulation; 1991 Feb; 83(2):652-60. PubMed ID: 1991383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different activation of L-arginine pathway by bradykinin, serotonin, and clonidine in coronary arteries.
    Richard V; Tanner FC; Tschudi M; Lüscher TF
    Am J Physiol; 1990 Nov; 259(5 Pt 2):H1433-9. PubMed ID: 2122744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of lysophophatidylcholine-induced endothelial dysfunction.
    Freeman JE; Kuo WY; Drenger B; Barnett TN; Levine MA; Flavahan NA
    J Cardiovasc Pharmacol; 1996 Sep; 28(3):345-52. PubMed ID: 8877579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pertussis toxin inhibits endothelium-dependent relaxations evoked by fluoride.
    Flavahan NA; Vanhoutte PM
    Eur J Pharmacol; 1990 Mar; 178(1):121-4. PubMed ID: 2110066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of endothelium-derived nitric oxide in porcine coronary resistance arteries.
    Tschudi M; Richard V; Bühler FR; Lüscher TF
    Am J Physiol; 1991 Jan; 260(1 Pt 2):H13-20. PubMed ID: 1992790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of atrial and brain natriuretic peptides on lysophosphatidylcholine-mediated endothelial dysfunction.
    Murohara T; Kugiyama K; Ota Y; Doi H; Ogata N; Ohgushi M; Yasue H
    J Cardiovasc Pharmacol; 1999 Dec; 34(6):870-8. PubMed ID: 10598132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelial dysfunction exacerbates the impairment of relaxation by lysophosphatidylcholine in porcine coronary artery.
    Leung SW; Teoh H; Quan A; Man RY
    Clin Exp Pharmacol Physiol; 1997 Dec; 24(12):984-6. PubMed ID: 9406672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LPC in oxidized LDL elicits vasocontraction and inhibits endothelium- dependent relaxation.
    Murohara T; Kugiyama K; Ohgushi M; Sugiyama S; Ohta Y; Yasue H
    Am J Physiol; 1994 Dec; 267(6 Pt 2):H2441-9. PubMed ID: 7810742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased production of nitric oxide in coronary arteries during congestive heart failure.
    O'Murchu B; Miller VM; Perrella MA; Burnett JC
    J Clin Invest; 1994 Jan; 93(1):165-71. PubMed ID: 8282783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lysophosphatidylcholine inhibits endothelium-dependent hyperpolarization and N omega-nitro-L-arginine/indomethacin-resistant endothelium-dependent relaxation in the porcine coronary artery.
    Eizawa H; Yui Y; Inoue R; Kosuga K; Hattori R; Aoyama T; Sasayama S
    Circulation; 1995 Dec; 92(12):3520-6. PubMed ID: 8521575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.