BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 8456983)

  • 41. Two mechanisms mediate relaxation by bradykinin of pig coronary artery: NO-dependent and -independent responses.
    Cowan CL; Cohen RA
    Am J Physiol; 1991 Sep; 261(3 Pt 2):H830-5. PubMed ID: 1653538
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modulation by aging of the coronary vascular response to endothelin-1 in the rat isolated perfused heart.
    Katano Y; Ishihata A; Morinobu S; Endoh M
    Naunyn Schmiedebergs Arch Pharmacol; 1993 Jul; 348(1):82-7. PubMed ID: 8377844
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hypoxic coronary vasodilatation and cGMP overproduction are blocked by a nitric oxide synthase inhibitor, but not by a guanylyl cyclase ANF receptor antagonist.
    Park KH; Levi R
    Eur J Pharmacol; 1994 Apr; 256(1):99-102. PubMed ID: 7517893
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Changes in pulmonary vascular tone during exercise. Effects of nitric oxide (NO) synthase inhibition, L-arginine infusion, and NO inhalation.
    Koizumi T; Gupta R; Banerjee M; Newman JH
    J Clin Invest; 1994 Dec; 94(6):2275-82. PubMed ID: 7527429
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of oxygen tension on flow-induced vasodilation in porcine coronary resistance arterioles.
    Jimenez AH; Tanner MA; Caldwell WM; Myers PR
    Microvasc Res; 1996 May; 51(3):365-77. PubMed ID: 8992234
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanism of actions of sumatriptan on coronary flow before and after endothelial dysfunction in guinea-pig isolated heart.
    Ellwood AJ; Curtis MJ
    Br J Pharmacol; 1997 Mar; 120(6):1039-48. PubMed ID: 9134215
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Involvement of the L-arginine-nitric oxide pathway in hyperglycaemia-induced coronary artery dysfunction of isolated guinea pig hearts.
    Wascher TC; Bachernegg M; Kickenweiz A; Stark G; Stark U; Toplak H; Graier WF
    Eur J Clin Invest; 1996 Aug; 26(8):707-12. PubMed ID: 8872068
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nitric oxide generation and hypoxic vasoconstriction in buffer-perfused rabbit lungs.
    Grimminger F; Spriestersbach R; Weissmann N; Walmrath D; Seeger W
    J Appl Physiol (1985); 1995 Apr; 78(4):1509-15. PubMed ID: 7615463
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The interaction of nitric oxide and superoxide in the human fetal-placental vasculature.
    Holcberg G; Kossenjans W; Miodovnik M; Myatt L
    Am J Obstet Gynecol; 1995 Aug; 173(2):528-33. PubMed ID: 7544069
    [TBL] [Abstract][Full Text] [Related]  

  • 50. N omega-nitro-L-arginine and pulmonary vascular pressure-flow relationship in conscious dogs.
    Nishiwaki K; Nyhan DP; Rock P; Desai PM; Peterson WP; Pribble CG; Murray PA
    Am J Physiol; 1992 May; 262(5 Pt 2):H1331-7. PubMed ID: 1590434
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Coronary vasodilatation induced by endotoxin in the rabbit isolated perfused heart is nitric oxide-dependent and inhibited by dexamethasone.
    Smith RE; Palmer RM; Moncada S
    Br J Pharmacol; 1991 Sep; 104(1):5-6. PubMed ID: 1723917
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of inhibition of nitric oxide formation on coronary blood flow during exercise in the dog.
    Altman JD; Kinn J; Duncker DJ; Bache RJ
    Cardiovasc Res; 1994 Jan; 28(1):119-24. PubMed ID: 8111780
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Importance of NO/EDRF for glomerular and tubular function: studies in the isolated perfused rat kidney.
    Radermacher J; Klanke B; Schurek HJ; Stolte HF; Frölich JC
    Kidney Int; 1992 Jun; 41(6):1549-59. PubMed ID: 1501411
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nitric oxide contributes to right coronary vasodilation during systemic hypoxia.
    Martinez RR; Setty S; Zong P; Tune JD; Downey HF
    Am J Physiol Heart Circ Physiol; 2005 Mar; 288(3):H1139-46. PubMed ID: 15513958
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The role of nitric oxide in the initiation and in the duration of some vasodilator responses in the coronary circulation.
    Gattullo D; Pagliaro P; Linden RJ; Merletti A; Losano G
    Pflugers Arch; 1995 May; 430(1):96-104. PubMed ID: 7667082
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Regional differences in endothelium-dependent relaxation in the rat: contribution of nitric oxide and nitric oxide-independent mechanisms.
    Zygmunt PM; Ryman T; Högestätt ED
    Acta Physiol Scand; 1995 Nov; 155(3):257-66. PubMed ID: 8619323
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The role of the L-arginine/nitric oxide pathway in myocardial ischaemic and reperfusion injury.
    Pernow J; Wang QD
    Acta Physiol Scand; 1999 Oct; 167(2):151-9. PubMed ID: 10571551
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The endothelium-dependent and the endothelium-independent vasodilators in the isolated, perfused guinea pig heart.
    Chłopicki S; Gryglewski RJ
    J Physiol Pharmacol; 1992 Dec; 43(4):353-65. PubMed ID: 1294266
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Endotoxin-induced contractile dysfunction in guinea pig hearts is not mediated by nitric oxide.
    Decking UK; Flesche CW; Gödecke A; Schrader J
    Am J Physiol; 1995 Jun; 268(6 Pt 2):H2460-5. PubMed ID: 7541961
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of steady versus oscillating flow on porcine coronary arterioles: involvement of NO and superoxide anion.
    Sorop O; Spaan JA; Sweeney TE; VanBavel E
    Circ Res; 2003 Jun; 92(12):1344-51. PubMed ID: 12764025
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.