BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 8457430)

  • 1. The production, buffering and efflux of protons in human skeletal muscle during exercise and recovery.
    Kemp GJ; Taylor DJ; Styles P; Radda GK
    NMR Biomed; 1993; 6(1):73-83. PubMed ID: 8457430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo ATP synthesis rates in single human muscles during high intensity exercise.
    Walter G; Vandenborne K; Elliott M; Leigh JS
    J Physiol; 1999 Sep; 519 Pt 3(Pt 3):901-10. PubMed ID: 10457099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calf muscle mitochondrial and glycogenolytic ATP synthesis in patients with claudication due to peripheral vascular disease analysed using 31P magnetic resonance spectroscopy.
    Kemp GJ; Hands LJ; Ramaswami G; Taylor DJ; Nicolaides A; Amato A; Radda GK
    Clin Sci (Lond); 1995 Dec; 89(6):581-90. PubMed ID: 8549076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytosolic pH buffering during exercise and recovery in skeletal muscle of patients with McArdle's disease.
    Kemp GJ; Tonon C; Malucelli E; Testa C; Liava A; Manners D; Trevisi E; Martinuzzi A; Barbiroli B; Lodi R
    Eur J Appl Physiol; 2009 Mar; 105(5):687-94. PubMed ID: 19066935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of exercise-induced intracellular acidosis on the phosphocreatine recovery kinetics: a 31P MRS study in three muscle groups in humans.
    Layec G; Malucelli E; Le Fur Y; Manners D; Yashiro K; Testa C; Cozzone PJ; Iotti S; Bendahan D
    NMR Biomed; 2013 Nov; 26(11):1403-11. PubMed ID: 23703831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP synthesis and proton handling in muscle during short periods of exercise and subsequent recovery.
    Bendahan D; Kemp GJ; Roussel M; Fur YL; Cozzone PJ
    J Appl Physiol (1985); 2003 Jun; 94(6):2391-7. PubMed ID: 12611771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton efflux in human skeletal muscle during recovery from exercise.
    Kemp GJ; Thompson CH; Taylor DJ; Radda GK
    Eur J Appl Physiol Occup Physiol; 1997; 76(5):462-71. PubMed ID: 9367287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis by 31P magnetic resonance spectroscopy of abnormal mitochondrial oxidation in skeletal muscle during recovery from exercise.
    Kemp GJ; Taylor DJ; Thompson CH; Hands LJ; Rajagopalan B; Styles P; Radda GK
    NMR Biomed; 1993; 6(5):302-10. PubMed ID: 8268062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle energy metabolism in McArdle's syndrome by in vivo phosphorus magnetic resonance spectroscopy.
    Argov Z; Bank WJ; Maris J; Chance B
    Neurology; 1987 Nov; 37(11):1720-4. PubMed ID: 3478608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating the ATP cost of force production in the human gastrocnemius/soleus muscle group using 31P MRS and 1H MRI.
    Boska M
    NMR Biomed; 1991 Aug; 4(4):173-81. PubMed ID: 1657100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MR imaging as a potential diagnostic test for metabolic myopathies: importance of variations in the T2 of muscle with exercise.
    Jehenson P; Leroy-Willig A; de Kerviler E; Duboc D; Syrota A
    AJR Am J Roentgenol; 1993 Aug; 161(2):347-51. PubMed ID: 8333376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological constraints on changes in pH and phosphorus metabolite concentrations in ischemically exercising muscle: implications for metabolic control and for the interpretation of 31P-magnetic resonance spectroscopic studies.
    Kemp GJ
    MAGMA; 1997 Sep; 5(3):231-41. PubMed ID: 9351027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular energetics of dystrophic muscle.
    Kemp GJ; Taylor DJ; Dunn JF; Frostick SP; Radda GK
    J Neurol Sci; 1993 Jun; 116(2):201-6. PubMed ID: 8393092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparisons of ATP turnover in human muscle during ischemic and aerobic exercise using 31P magnetic resonance spectroscopy.
    Kemp GJ; Thompson CH; Barnes PR; Radda GK
    Magn Reson Med; 1994 Mar; 31(3):248-58. PubMed ID: 8057795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of phosphocreatine resynthesis during recovery from exercise in human skeletal muscle.
    Kemp GJ; Taylor DJ; Radda GK
    NMR Biomed; 1993; 6(1):66-72. PubMed ID: 8457428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP production and mechanical work in exercising skeletal muscle: a theoretical analysis applied to 31P magnetic resonance spectroscopic studies of dialyzed uremic patients.
    Kemp GJ; Thompson CH; Taylor DJ; Radda GK
    Magn Reson Med; 1995 May; 33(5):601-9. PubMed ID: 7596263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of oxidative and glycogenolytic ATP synthesis in exercising rat skeletal muscle studied by 31P magnetic resonance spectroscopy.
    Kemp GJ; Sanderson AL; Thompson CH; Radda GK
    NMR Biomed; 1996 Sep; 9(6):261-70. PubMed ID: 9073304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skeletal muscle bioenergetics in myotonic dystrophy.
    Taylor DJ; Kemp GJ; Woods CG; Edwards JH; Radda GK
    J Neurol Sci; 1993 Jun; 116(2):193-200. PubMed ID: 8336166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interrelations of ATP synthesis and proton handling in ischaemically exercising human forearm muscle studied by 31P magnetic resonance spectroscopy.
    Kemp GJ; Roussel M; Bendahan D; Le Fur Y; Cozzone PJ
    J Physiol; 2001 Sep; 535(Pt 3):901-28. PubMed ID: 11559784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intersubject differences in the effect of acidosis on phosphocreatine recovery kinetics in muscle after exercise are due to differences in proton efflux rates.
    van den Broek NM; De Feyter HM; de Graaf L; Nicolay K; Prompers JJ
    Am J Physiol Cell Physiol; 2007 Jul; 293(1):C228-37. PubMed ID: 17392383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.