BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 8457445)

  • 21. Effects of prolonged occlusion on stratum corneum barrier function and water holding capacity.
    Fluhr JW; Lazzerini S; Distante F; Gloor M; Berardesca E
    Skin Pharmacol Appl Skin Physiol; 1999; 12(4):193-8. PubMed ID: 10420139
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The relationship between transepidermal water loss and skin permeability.
    Machado M; Salgado TM; Hadgraft J; Lane ME
    Int J Pharm; 2010 Jan; 384(1-2):73-7. PubMed ID: 19799976
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characteristic differences in barrier and hygroscopic properties between normal and cosmetic dry skin. I. Enhanced barrier analysis with sequential tape-stripping.
    Lu N; Chandar P; Tempesta D; Vincent C; Bajor J; McGuiness H
    Int J Cosmet Sci; 2014 Apr; 36(2):167-74. PubMed ID: 24397786
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of skin barrier function using transepidermal water loss: effect of age.
    Roskos KV; Guy RH
    Pharm Res; 1989 Nov; 6(11):949-53. PubMed ID: 2594686
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of prolonged drying on transepidermal water loss, capacitance and pH of human vulvar and forearm skin.
    Elsner P; Maibach HI
    Acta Derm Venereol; 1990; 70(2):105-9. PubMed ID: 1969192
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Variability in transepidermal water loss of the skin: evaluation of a method to assess susceptibility to contact dermatitis in epidemiological studies.
    Smit HA; Pinnagoda J; Tupker RA; Burema J; Coenraads PJ; Nater JP
    Int Arch Occup Environ Health; 1990; 62(7):509-12. PubMed ID: 2289823
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The correlation between transepidermal water loss and percutaneous absorption: an overview.
    Levin J; Maibach H
    J Control Release; 2005 Mar; 103(2):291-9. PubMed ID: 15763614
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transepidermal water loss related to volar forearm sites in humans.
    Panisset F; Treffel P; Faivre B; Lecomte PB; Agache P
    Acta Derm Venereol; 1992; 72(1):4-5. PubMed ID: 1350141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A proof-of-principle study comparing barrier function and cell morphology in face and body skin.
    Gorcea M; Lane ME; Moore DJ
    Int J Cosmet Sci; 2019 Dec; 41(6):613-616. PubMed ID: 31389021
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transepidermal water loss in young and aged healthy humans: a systematic review and meta-analysis.
    Kottner J; Lichterfeld A; Blume-Peytavi U
    Arch Dermatol Res; 2013 May; 305(4):315-23. PubMed ID: 23341028
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cutaneous barrier function after cold exposure in hairless mice: a model to demonstrate how cold interferes with barrier homeostasis among workers in the fish-processing industry.
    Halkier-Sørensen L; Menon GK; Elias PM; Thestrup-Pedersen K; Feingold KR
    Br J Dermatol; 1995 Mar; 132(3):391-401. PubMed ID: 7718455
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring the influence of skin perfusion on transepidermal water loss.
    Rodrigues LM; Pinto PC; Magro JM; Fernandes M; Alves J
    Skin Res Technol; 2004 Nov; 10(4):257-62. PubMed ID: 15536657
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transepidermal water loss in newborns within the first 24 hours of life: baseline values and comparison with adults.
    Raone B; Raboni R; Rizzo N; Simonazzi G; Patrizi A
    Pediatr Dermatol; 2014; 31(2):191-5. PubMed ID: 24383609
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transepidermal water loss and skin capacitance alterations among workers in an ultra-low humidity environment.
    Chou TC; Lin KH; Wang SM; Lee CW; Su SB; Shih TS; Chang HY
    Arch Dermatol Res; 2005 Apr; 296(10):489-95. PubMed ID: 15750803
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vivo microdialysis for the investigation of drug levels in the dermis and the effect of barrier perturbation on cutaneous drug penetration. Studies in hairless rats and human subjects.
    Benfeldt E
    Acta Derm Venereol Suppl (Stockh); 1999; 206():1-59. PubMed ID: 10605601
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biophysical parameters of skin: map of human face, regional, and age-related differences.
    Marrakchi S; Maibach HI
    Contact Dermatitis; 2007 Jul; 57(1):28-34. PubMed ID: 17577354
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A quantitative study of transepidermal water loss (TEWL) on conventional and microclimate management capable mattresses and hospital beds.
    Denzinger M; Rothenberger J; Held M; Joss L; Ehnert S; Kolbenschlag J; Daigeler A; Krauss S
    J Tissue Viability; 2019 Nov; 28(4):194-199. PubMed ID: 31272882
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of barrier perturbation on cutaneous salicylic acid penetration in human skin: in vivo pharmacokinetics using microdialysis and non-invasive quantification of barrier function.
    Benfeldt E; Serup J; Menné T
    Br J Dermatol; 1999 Apr; 140(4):739-48. PubMed ID: 10233334
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vivo evaluation in man by two noninvasive methods of the stratum corneum barrier function after physical and chemical modifications.
    Kompaore F; Dupont C; Marty JP
    Int J Cosmet Sci; 1991 Dec; 13(6):293-302. PubMed ID: 19291064
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Variation in barrier impairment and inflammation of human skin as determined by sodium lauryl sulphate penetration rate.
    de Jongh CM; Jakasa I; Verberk MM; Kezic S
    Br J Dermatol; 2006 Apr; 154(4):651-7. PubMed ID: 16536807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.