These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 8457526)

  • 1. Fermentation and subsequent disposition of 14C-labelled plant cell wall material in the rat.
    Gray DF; Eastwood MA; Brydon WG; Fry SC
    Br J Nutr; 1993 Jan; 69(1):189-97. PubMed ID: 8457526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uniformly 14C-labelled plant cell walls: production, analysis and behaviour in rat gastrointestinal tract.
    Gray DF; Fry SC; Eastwood MA
    Br J Nutr; 1993 Jan; 69(1):177-88. PubMed ID: 8384475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme supplementation, degradation and metabolism of three U-14C-labelled cell-wall substrates in the fowl.
    Savory CJ
    Br J Nutr; 1992 Jan; 67(1):91-102. PubMed ID: 1547205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of 14C-labelled substrates to study plant cell wall breakdown in the gastrointestinal tract.
    Buchanan CJ; Fry SC; Eastwood MA
    Proc Nutr Soc; 1996 Nov; 55(3):927-36. PubMed ID: 9004334
    [No Abstract]   [Full Text] [Related]  

  • 5. Disposition of [14C]gamma-cyclodextrin in germ-free and conventional rats.
    De Bie AT; Van Ommen B; Bär A
    Regul Toxicol Pharmacol; 1998 Apr; 27(2):150-8. PubMed ID: 9671569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism and disposition of erythritol after oral administration to rats.
    Noda K; Oku T
    J Nutr; 1992 Jun; 122(6):1266-72. PubMed ID: 1588443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lack of release of bound anthocyanins and phenolic acids from carrot plant cell walls and model composites during simulated gastric and small intestinal digestion.
    Padayachee A; Netzel G; Netzel M; Day L; Mikkelsen D; Gidley MJ
    Food Funct; 2013 Jun; 4(6):906-16. PubMed ID: 23660747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic fates of U-14C-labelled monosaccharides and an enzyme-treated cell-wall substrate in the fowl.
    Savory CJ
    Br J Nutr; 1992 Jan; 67(1):103-14. PubMed ID: 1547197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro 14C-amino acid fermentation by CF3, a characterized continuous-flow competitive exclusion culture of caecal bacteria.
    Hume ME; Nisbet DJ; DeLoach JR
    J Appl Microbiol; 1997 Aug; 83(2):236-42. PubMed ID: 9281827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disposition of 14C-alpha-cyclodextrin in germ-free and conventional rats.
    Van Ommen B; De Bie AT; Bär A
    Regul Toxicol Pharmacol; 2004 Jun; 39 Suppl 1():57-66. PubMed ID: 15265616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico studies of plant primary cell walls - structure and mechanics.
    Pieczywek PM; Chibrikov V; Zdunek A
    Biol Rev Camb Philos Soc; 2023 Jun; 98(3):887-899. PubMed ID: 36692136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acidic fermentation in the caecum increases absorption of calcium and magnesium in the large intestine of the rat.
    Younes H; Demigné C; Rémésy C
    Br J Nutr; 1996 Feb; 75(2):301-14. PubMed ID: 8785206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Taurocholic acid adsorption during non-starch polysaccharide fermentation: an in vitro study.
    Gelissen IC; Eastwood MA
    Br J Nutr; 1995 Aug; 74(2):221-8. PubMed ID: 7547839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of cellulose within the gastrointestinal tract in man.
    Kelleher J; Walters MP; Srinivasan TR; Hart G; Findlay JM; Losowsky MS
    Gut; 1984 Aug; 25(8):811-5. PubMed ID: 6430755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors influencing the 1-g 14C-D-xylose breath test for bacterial overgrowth.
    Riordan SM; McIver CJ; Duncombe VM; Bolin TD; Thomas MC
    Am J Gastroenterol; 1995 Sep; 90(9):1455-60. PubMed ID: 7661169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue disposition and excretion of gold and 14C in rats treated with sodium aurothio[1,4-14C]malate or thio [1,4-14C] malic acid.
    Taylor A; King LJ; Marks V
    Xenobiotica; 1985 Mar; 15(3):221-6. PubMed ID: 3927598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vegetable fiber fermentation by human fecal bacteria: cell wall polysaccharide disappearance and short-chain fatty acid production during in vitro fermentation and water-holding capacity of unfermented residues.
    Bourquin LD; Titgemeyer EC; Fahey GC
    J Nutr; 1993 May; 123(5):860-9. PubMed ID: 8387579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of cellulose-based composites with hemicelluloses and pectins using Gluconacetobacter fermentation.
    Mikkelsen D; Gidley MJ
    Methods Mol Biol; 2011; 715():197-208. PubMed ID: 21222086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of diferulate formation in dicotyledonous and gramineous cell-suspension cultures.
    Lindsay SE; Fry SC
    Planta; 2008 Jan; 227(2):439-52. PubMed ID: 17938956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental changes in collenchyma cell-wall polysaccharides in celery (Apium graveolens L.) petioles.
    Chen D; Melton LD; Zujovic Z; Harris PJ
    BMC Plant Biol; 2019 Feb; 19(1):81. PubMed ID: 30782133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.