BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8457545)

  • 1. An extended X-ray absorption fine structure investigation of the structure of the active site of lactoperoxidase.
    Chang CS; Sinclair R; Khalid S; Yamazaki I; Nakamura S; Powers L
    Biochemistry; 1993 Mar; 32(11):2780-6. PubMed ID: 8457545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytochrome c peroxidase compound ES is identical with horseradish peroxide compound I in iron-ligand distances.
    Chance M; Powers L; Poulos T; Chance B
    Biochemistry; 1986 Mar; 25(6):1266-70. PubMed ID: 3008825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral analysis of lactoperoxidase. Evidence for a common heme in mammalian peroxidases.
    Andersson LA; Bylkas SA; Wilson AE
    J Biol Chem; 1996 Feb; 271(7):3406-12. PubMed ID: 8631940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the active site of lignin peroxidase isozyme H2: native enzyme, compound III, and reduced form.
    Sinclair R; Yamazaki I; Bumpus J; Brock B; Chang CS; Albo A; Powers L
    Biochemistry; 1992 May; 31(20):4892-900. PubMed ID: 1591249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray absorption studies of myoglobin peroxide reveal functional differences between globins and heme enzymes.
    Chance M; Powers L; Kumar C; Chance B
    Biochemistry; 1986 Mar; 25(6):1259-65. PubMed ID: 3964675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH dependence of the active site of horseradish peroxidase compound II.
    Chang CS; Yamazaki I; Sinclair R; Khalid S; Powers L
    Biochemistry; 1993 Jan; 32(3):923-8. PubMed ID: 8422396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assignment of the axial ligands of the haem in milk lactoperoxidase using magnetic circular dichroism spectroscopy.
    Sievers G; Gadsby PM; Peterson J; Thomson AJ
    Biochim Biophys Acta; 1983 Feb; 742(3):659-68. PubMed ID: 6301559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Standard reduction potentials of all couples of the peroxidase cycle of lactoperoxidase.
    Furtmüller PG; Arnhold J; Jantschko W; Zederbauer M; Jakopitsch C; Obinger C
    J Inorg Biochem; 2005 May; 99(5):1220-9. PubMed ID: 15833345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Horseradish peroxidase catalyzed oxidation of thiocyanate by hydrogen peroxide: comparison with lactoperoxidase-catalysed oxidation and role of distal histidine.
    Modi S; Behere DV; Mitra S
    Biochim Biophys Acta; 1991 Oct; 1080(1):45-50. PubMed ID: 1932081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Axial ligand coordination in intestinal peroxidase.
    Ikeda-Saito M; Kimura S
    Arch Biochem Biophys; 1990 Dec; 283(2):351-5. PubMed ID: 2177328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for the high-spin heme iron in both stable and unstable reduced forms of lactoperoxidase: low-temperature magnetic circular dichroism data.
    Sharonov YA
    FEBS Lett; 1995 Dec; 377(3):512-4. PubMed ID: 8549787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of milk lactoperoxidase. A study using circular dichroism and difference absorption spectroscopy.
    Sievers G
    Biochim Biophys Acta; 1980 Jul; 624(1):249-59. PubMed ID: 7407237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of lactoperoxidase-H2O2 compounds by ferrocyanide: indirect evidence of an apoprotein site for one of the two oxidizing equivalents.
    Courtin F; Michot JL; Virion A; Pommier J; Deme D
    Biochem Biophys Res Commun; 1984 Jun; 121(2):463-70. PubMed ID: 6375671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction of ferrous lactoperoxidase with hydrogen peroxide and dioxygen: an anaerobic stopped-flow study.
    Jantschko W; Furtmüller PG; Zederbauer M; Neugschwandtner K; Jakopitsch C; Obinger C
    Arch Biochem Biophys; 2005 Feb; 434(1):51-9. PubMed ID: 15629108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lignin peroxidase: resonance Raman spectral evidence for compound II and for a temperature-dependent coordination-state equilibrium in the ferric enzyme.
    Andersson LA; Renganathan V; Loehr TM; Gold MH
    Biochemistry; 1987 Apr; 26(8):2258-63. PubMed ID: 3040086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of lactoperoxidase by its own catalytic product: crystal structure of the hypothiocyanate-inhibited bovine lactoperoxidase at 2.3-A resolution.
    Singh AK; Singh N; Sharma S; Shin K; Takase M; Kaur P; Srinivasan A; Singh TP
    Biophys J; 2009 Jan; 96(2):646-54. PubMed ID: 19167310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of reaction of chlorite with mammalian heme peroxidases.
    Jakopitsch C; Pirker KF; Flemmig J; Hofbauer S; Schlorke D; Furtmüller PG; Arnhold J; Obinger C
    J Inorg Biochem; 2014 Jun; 135(100):10-9. PubMed ID: 24632343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of the sulfonium linkage in the stabilization of the ferrous form of myeloperoxidase: a comparison with lactoperoxidase.
    Brogioni S; Stampler J; Furtmüller PG; Feis A; Obinger C; Smulevich G
    Biochim Biophys Acta; 2008 May; 1784(5):843-9. PubMed ID: 18359301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct heme-substrate interactions of lactoperoxidase probed by resonance Raman spectroscopy: difference between animal and plant peroxidases.
    Kitagawa T; Hashimoto S; Teraoka J; Nakamura S; Yajima H; Hosoya T
    Biochemistry; 1983 Jun; 22(12):2788-92. PubMed ID: 6871162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordination geometry of heme in lactoperoxidase: pH-dependent 1H relaxivity and optical spectral studies.
    Modi S; Behere DV; Mitra S
    J Inorg Biochem; 1990 Jan; 38(1):17-25. PubMed ID: 2159053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.