These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 8457548)

  • 1. Intermediate partitioning in the tartrate dehydrogenase-catalyzed oxidative decarboxylation of D-malate.
    Tipton PA
    Biochemistry; 1993 Mar; 32(11):2822-7. PubMed ID: 8457548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tartrate dehydrogenase catalyzes the stepwise oxidative decarboxylation of D-malate with both NAD and thio-NAD.
    Karsten WE; Tipton PA; Cook PF
    Biochemistry; 2002 Oct; 41(40):12193-9. PubMed ID: 12356321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient-state kinetic analysis of the oxidative decarboxylation of D-malate catalyzed by tartrate dehydrogenase.
    Tipton PA
    Biochemistry; 1996 Mar; 35(9):3108-14. PubMed ID: 8608151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal ion activator effects on intrinsic isotope effects for hydride transfer from decarboxylation in the reaction catalyzed by the NAD-malic enzyme from Ascaris suum.
    Karsten WE; Gavva SR; Park SH; Cook PF
    Biochemistry; 1995 Mar; 34(10):3253-60. PubMed ID: 7880820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of intermediate partitioning to calculate intrinsic isotope effects for the reaction catalyzed by malic enzyme.
    Grissom CB; Cleland WW
    Biochemistry; 1985 Feb; 24(4):944-8. PubMed ID: 3995001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the multiple catalytic activities of tartrate dehydrogenase.
    Tipton PA; Peisach J
    Biochemistry; 1990 Feb; 29(7):1749-56. PubMed ID: 2184888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alpha-secondary tritium kinetic isotope effects indicate hydrogen tunneling and coupled motion occur in the oxidation of L-malate by NAD-malic enzyme.
    Karsten WE; Hwang CC; Cook PF
    Biochemistry; 1999 Apr; 38(14):4398-402. PubMed ID: 10194359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isotope effect studies of chicken liver NADP malic enzyme: role of the metal ion and viscosity dependence.
    Grissom CB; Cleland WW
    Biochemistry; 1988 Apr; 27(8):2927-34. PubMed ID: 3401456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple isotope effects with alternative dinucleotide substrates as a probe of the malic enzyme reaction.
    Weiss PM; Gavva SR; Harris BG; Urbauer JL; Cleland WW; Cook PF
    Biochemistry; 1991 Jun; 30(23):5755-63. PubMed ID: 2043615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the rate-limiting steps for malic enzyme by the use of isotope effects and other kinetic studies.
    Schimerlik MI; Grimshaw CE; Cleland WW
    Biochemistry; 1977 Feb; 16(4):571-6. PubMed ID: 13820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of enzymatic and acid-catalyzed decarboxylations of prephenate.
    Hermes JD; Tipton PA; Fisher MA; O'Leary MH; Morrison JF; Cleland WW
    Biochemistry; 1984 Dec; 23(25):6263-75. PubMed ID: 6395898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae.
    Lin Y; Volkman J; Nicholas KM; Yamamoto T; Eguchi T; Nimmo SL; West AH; Cook PF
    Biochemistry; 2008 Apr; 47(13):4169-80. PubMed ID: 18321070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primary deuterium and tritium isotope effects upon V/K in the liver alcohol dehydrogenase reaction with ethanol.
    Damgaard SE
    Biochemistry; 1981 Sep; 20(20):5662-9. PubMed ID: 7028109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the chemical mechanism of malic enzyme by isotope effects.
    Edens WA; Urbauer JL; Cleland WW
    Biochemistry; 1997 Feb; 36(5):1141-7. PubMed ID: 9033405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH variation of isotope effects in enzyme-catalyzed reactions. 2. Isotope-dependent step not pH dependent. Kinetic mechanism of alcohol dehydrogenase.
    Cook PF; Cleland WW
    Biochemistry; 1981 Mar; 20(7):1805-16. PubMed ID: 7013801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An isothermal titration calorimetry study of the binding of substrates and ligands to the tartrate dehydrogenase from Pseudomonas putida reveals half-of-the-sites reactivity.
    Karsten WE; Cook PF
    Biochemistry; 2006 Jul; 45(29):9000-6. PubMed ID: 16846243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stepwise versus concerted oxidative decarboxylation catalyzed by malic enzyme: a reinvestigation.
    Karsten WE; Cook PF
    Biochemistry; 1994 Mar; 33(8):2096-103. PubMed ID: 8117666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A transient intermediate in the reaction catalyzed by (S)-mandelate dehydrogenase from Pseudomonas putida.
    Dewanti AR; Mitra B
    Biochemistry; 2003 Nov; 42(44):12893-901. PubMed ID: 14596603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Examining the relative timing of hydrogen abstraction steps during NAD(+)-dependent oxidation of secondary alcohols catalyzed by long-chain D-mannitol dehydrogenase from Pseudomonas fluorescens using pH and kinetic isotope effects.
    Klimacek M; Nidetzky B
    Biochemistry; 2002 Aug; 41(31):10158-65. PubMed ID: 12146981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acid-base catalysis in the yeast alcohol dehydrogenase reaction.
    Klinman JP
    J Biol Chem; 1975 Apr; 250(7):2569-73. PubMed ID: 235517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.