These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 8457558)
1. A point mutation at cysteine 189 blocks the water permeability of rat kidney water channel CHIP28k. Zhang R; van Hoek AN; Biwersi J; Verkman AS Biochemistry; 1993 Mar; 32(12):2938-41. PubMed ID: 8457558 [TBL] [Abstract][Full Text] [Related]
2. Cloning, functional analysis and cell localization of a kidney proximal tubule water transporter homologous to CHIP28. Zhang R; Skach W; Hasegawa H; van Hoek AN; Verkman AS J Cell Biol; 1993 Jan; 120(2):359-69. PubMed ID: 8421053 [TBL] [Abstract][Full Text] [Related]
3. Selected cysteine point mutations confer mercurial sensitivity to the mercurial-insensitive water channel MIWC/AQP-4. Shi LB; Verkman AS Biochemistry; 1996 Jan; 35(2):538-44. PubMed ID: 8555225 [TBL] [Abstract][Full Text] [Related]
4. The mercury-sensitive residue at cysteine 189 in the CHIP28 water channel. Preston GM; Jung JS; Guggino WB; Agre P J Biol Chem; 1993 Jan; 268(1):17-20. PubMed ID: 7677994 [TBL] [Abstract][Full Text] [Related]
5. Functional independence of monomeric CHIP28 water channels revealed by expression of wild-type mutant heterodimers. Shi LB; Skach WR; Verkman AS J Biol Chem; 1994 Apr; 269(14):10417-22. PubMed ID: 7511600 [TBL] [Abstract][Full Text] [Related]
6. Localization and functional analysis of CHIP28k water channels in stably transfected Chinese hamster ovary cells. Ma T; Frigeri A; Tsai ST; Verbavatz JM; Verkman AS J Biol Chem; 1993 Oct; 268(30):22756-64. PubMed ID: 8226786 [TBL] [Abstract][Full Text] [Related]
7. Mercury-sensitive residues and pore site in AQP3 water channel. Kuwahara M; Gu Y; Ishibashi K; Marumo F; Sasaki S Biochemistry; 1997 Nov; 36(46):13973-8. PubMed ID: 9369468 [TBL] [Abstract][Full Text] [Related]
8. Tissue-specific expression of mRNA encoding rat kidney water channel CHIP28k by in situ hybridization. Hasegawa H; Zhang R; Dohrman A; Verkman AS Am J Physiol; 1993 Jan; 264(1 Pt 1):C237-45. PubMed ID: 7679251 [TBL] [Abstract][Full Text] [Related]
9. Importance of the mercury-sensitive cysteine on function and routing of AQP1 and AQP2 in oocytes. Mulders SM; Rijss JP; Hartog A; Bindels RJ; van Os CH; Deen PM Am J Physiol; 1997 Sep; 273(3 Pt 2):F451-6. PubMed ID: 9321919 [TBL] [Abstract][Full Text] [Related]
10. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Preston GM; Carroll TP; Guggino WB; Agre P Science; 1992 Apr; 256(5055):385-7. PubMed ID: 1373524 [TBL] [Abstract][Full Text] [Related]
11. Tetrameric assembly of CHIP28 water channels in liposomes and cell membranes: a freeze-fracture study. Verbavatz JM; Brown D; Sabolić I; Valenti G; Ausiello DA; Van Hoek AN; Ma T; Verkman AS J Cell Biol; 1993 Nov; 123(3):605-18. PubMed ID: 7693713 [TBL] [Abstract][Full Text] [Related]
12. Nonpolar environment of tryptophans in erythrocyte water channel CHIP28 determined by fluorescence quenching. Farinas J; Van Hoek AN; Shi LB; Erickson C; Verkman AS Biochemistry; 1993 Nov; 32(44):11857-64. PubMed ID: 8218257 [TBL] [Abstract][Full Text] [Related]
13. Evidence against a role of mouse, rat, and two cloned human t1alpha isoforms as a water channel or a regulator of aquaporin-type water channels. Ma T; Yang B; Matthay MA; Verkman AS Am J Respir Cell Mol Biol; 1998 Jul; 19(1):143-9. PubMed ID: 9651190 [TBL] [Abstract][Full Text] [Related]
14. Mercury chloride decreases the water permeability of aquaporin-4-reconstituted proteoliposomes. Yukutake Y; Tsuji S; Hirano Y; Adachi T; Takahashi T; Fujihara K; Agre P; Yasui M; Suematsu M Biol Cell; 2008 Jun; 100(6):355-63. PubMed ID: 18167118 [TBL] [Abstract][Full Text] [Related]
15. cAMP-dependent phosphorylation stimulates water permeability of aquaporin-collecting duct water channel protein expressed in Xenopus oocytes. Kuwahara M; Fushimi K; Terada Y; Bai L; Marumo F; Sasaki S J Biol Chem; 1995 May; 270(18):10384-7. PubMed ID: 7537730 [TBL] [Abstract][Full Text] [Related]
16. Water and glycerol permeabilities of aquaporins 1-5 and MIP determined quantitatively by expression of epitope-tagged constructs in Xenopus oocytes. Yang B; Verkman AS J Biol Chem; 1997 Jun; 272(26):16140-6. PubMed ID: 9195910 [TBL] [Abstract][Full Text] [Related]
17. Evidence from oocyte expression that the erythrocyte water channel is distinct from band 3 and the glucose transporter. Zhang R; Alper SL; Thorens B; Verkman AS J Clin Invest; 1991 Nov; 88(5):1553-8. PubMed ID: 1939644 [TBL] [Abstract][Full Text] [Related]
18. Functional reconstitution of the isolated erythrocyte water channel CHIP28. van Hoek AN; Verkman AS J Biol Chem; 1992 Sep; 267(26):18267-9. PubMed ID: 1526967 [TBL] [Abstract][Full Text] [Related]
19. Cultured bovine corneal endothelial cells express CHIP28 water channels. Echevarría M; Kuang K; Iserovich P; Li J; Preston GM; Agre P; Fischbarg J Am J Physiol; 1993 Nov; 265(5 Pt 1):C1349-55. PubMed ID: 7694494 [TBL] [Abstract][Full Text] [Related]
20. Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Ishibashi K; Sasaki S; Fushimi K; Uchida S; Kuwahara M; Saito H; Furukawa T; Nakajima K; Yamaguchi Y; Gojobori T Proc Natl Acad Sci U S A; 1994 Jul; 91(14):6269-73. PubMed ID: 7517548 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]