These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 8457584)

  • 1. Inactivation of phenobarbital-inducible rabbit-liver microsomal cytochrome P-450 by allylisopropylacetamide: impact on electron transfer.
    Golly I; Hlavica P
    Biochim Biophys Acta; 1993 Apr; 1142(1-2):74-82. PubMed ID: 8457584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect in vivo and in vitro of allylisopropylacetamide on the content of hepatic microsomal cytochrome P-450 2 of phenobarbital treated rabbits.
    Liem HH; Johnson EF; Muller-Eberhard U
    Biochem Biophys Res Commun; 1983 Mar; 111(3):926-32. PubMed ID: 6838593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of electrophoretically homogeneous phenobarbital-inducible and beta-naphthoflavone-inducible forms of liver microsomal cytochrome P-450.
    Haugen DA; Coon MJ
    J Biol Chem; 1976 Dec; 251(24):7929-39. PubMed ID: 187601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential haemin-mediated restoration of cytochrome P-450 N-demethylases after inactivation by allylisopropylacetamide.
    Bornheim LM; Kotake AN; Correia MA
    Biochem J; 1985 Apr; 227(1):277-86. PubMed ID: 3994685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of partition ratios for allylisopropylacetamide during suicidal processing by a phenobarbital-induced cytochrome P-450 isozyme from rat liver.
    Loosemore MJ; Wogan GN; Walsh C
    J Biol Chem; 1981 Aug; 256(16):8705-12. PubMed ID: 7263679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The functional role of cytochrome b5 reincorporated into hepatic microsomal fractions.
    Golly I; Hlavica P; Schartau W
    Arch Biochem Biophys; 1988 Jan; 260(1):232-40. PubMed ID: 3124747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histidine residues in rabbit liver microsomal cytochrome P-450 2B4 control electron transfer from NADPH-cytochrome P-450 reductase and cytochrome b5.
    Hlavica P; Lehnerer M; Eulitz M
    Biochem J; 1996 Sep; 318 ( Pt 3)(Pt 3):857-62. PubMed ID: 8836129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of cytochrome P-450 containing haem or cobalt-protoporphyrin in liver homogenates of rats treated with phenobarbital and allylisopropylacetamide.
    Bonkovsky HL; Sinclair JF; Healey JF; Sinclair PR; Smith EL
    Biochem J; 1984 Sep; 222(2):453-62. PubMed ID: 6477526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulative mechanisms in NADH- and NADPH-supported N-oxidation of 4-chloroaniline catalyzed by cytochrome b5-enriched rabbit liver microsomal fractions.
    Golly I; Hlavica P
    Biochim Biophys Acta; 1987 Jun; 913(2):219-27. PubMed ID: 3109485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and functional reconstitution of hepatic cytochrome P-450 in vivo. Reversal of allylisopropylacetamide-mediated destruction of the hemoprotein by exogenous heme.
    Farrell GC; Correia MA
    J Biol Chem; 1980 Nov; 255(21):10128-33. PubMed ID: 7430117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct evidence for electron transfer from ferrous cytochrome b5 to the oxyferrous intermediate of liver microsomal cytochrome P-450 LM2.
    Bonfils C; Balny C; Maurel P
    J Biol Chem; 1981 Sep; 256(18):9457-65. PubMed ID: 7287694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unique properties of NADPH- and NADH-dependent metabolism of p-nitroanisole catalyzed by cytochrome P-450 isozyme 2 in pulmonary and hepatic microsomal preparations from rabbits.
    Croft JE; Harrelson WG; Parandoosh Z; Philpot RM
    Chem Biol Interact; 1986 Feb; 57(2):143-60. PubMed ID: 3955788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of 2-allyl-2-isopropylacetamide as a catalytic site probe for rabbit cytochrome P-450.
    Smith A
    Res Commun Chem Pathol Pharmacol; 1981 Sep; 33(3):475-85. PubMed ID: 7330452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of cytochrome P-450 by 2-isopropyl-4-pentenamide and other xenobiotics leads to heme-derived protein adducts.
    Davies HW; Britt SG; Pohl LR
    Chem Biol Interact; 1986 Jun; 58(3):345-52. PubMed ID: 3742647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon tetrachloride and 2-isopropyl-4-pentenamide-induced inactivation of cytochrome P-450 leads to heme-derived protein adducts.
    Davies HW; Britt SG; Pohl LR
    Arch Biochem Biophys; 1986 Jan; 244(1):387-92. PubMed ID: 3947068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Changes in liver microsomal enzymes and the synthesis of delta-aminolevulinic acid in short-term exposure of rabbits to allylisopropylacetamide, hexachlorobenzene and phenobarbital].
    Ivanov E; Chernev K; Adzharov D
    Eksp Med Morfol; 1982; 21(3):110-5. PubMed ID: 7173102
    [No Abstract]   [Full Text] [Related]  

  • 17. Role of the electron transfer system in microsomal drug monooxygenase reaction catalyzed by cytochrome P-450.
    Taniguchi H; Imai Y; Sato R
    Arch Biochem Biophys; 1984 Aug; 232(2):585-96. PubMed ID: 6431905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of halothane on hepatic microsomal electron transfer.
    Berman MC; Ivanetich KM; Kench JE
    Biochem J; 1975 May; 148(2):179-86. PubMed ID: 239706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporation of exogenous heme into hepatic cytochrome P-450 in vivo.
    Correia MA; Farrell GC; Schmid R; Ortiz de Montellano PR; Yost GS; Mico BA
    J Biol Chem; 1979 Jan; 254(1):15-7. PubMed ID: 758315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical effects of the porphyrinogenic drug allylisopropylacetamide. A comparative study with phenobarbital.
    Rao MR; Padmanaban G
    Biochem J; 1973 Aug; 134(4):859-68. PubMed ID: 4357714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.