These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 8457665)
1. Torsion angle analysis of glycolipid order at membrane surfaces. Hare BJ; Howard KP; Prestegard JH Biophys J; 1993 Feb; 64(2):392-8. PubMed ID: 8457665 [TBL] [Abstract][Full Text] [Related]
2. An approximate model and empirical energy function for solute interactions with a water-phosphatidylcholine interface. Sanders CR; Schwonek JP Biophys J; 1993 Sep; 65(3):1207-18. PubMed ID: 8241401 [TBL] [Abstract][Full Text] [Related]
3. Dynamics of glycolipids in the liquid-crystalline state. 2H NMR study. Winsborrow BG; Smith IC; Jarrell HC Biophys J; 1991 Mar; 59(3):729-41. PubMed ID: 2049527 [TBL] [Abstract][Full Text] [Related]
4. Conformational response of the phosphatidylcholine headgroup to bilayer surface charge: torsion angle constraints from dipolar and quadrupolar couplings in bicelles. Semchyschyn DJ; Macdonald PM Magn Reson Chem; 2004 Feb; 42(2):89-104. PubMed ID: 14745788 [TBL] [Abstract][Full Text] [Related]
5. Conformation of sulfoquinovosyldiacylglycerol bound to a magnetically oriented membrane system. Howard KP; Prestegard JH Biophys J; 1996 Nov; 71(5):2573-82. PubMed ID: 8913595 [TBL] [Abstract][Full Text] [Related]
6. Computer modelling of glycolipids at membrane surfaces. Ram P; Kim E; Thomson DS; Howard KP; Prestegard JH Biophys J; 1992 Dec; 63(6):1530-5. PubMed ID: 1489910 [TBL] [Abstract][Full Text] [Related]
7. Spectroscopic studies of lipids and biological membranes: carbon-13 and proton magic-angle sample-spinning nuclear magnetic resonance study of glycolipid-water systems. Adebodun F; Chung J; Montez B; Oldfield E; Shan X Biochemistry; 1992 May; 31(18):4502-9. PubMed ID: 1316149 [TBL] [Abstract][Full Text] [Related]
8. Solvent effect on phosphatidylcholine headgroup dynamics as revealed by the energetics and dynamics of two gel-state bilayer headgroup structures at subzero temperatures. Hsieh CH; Wu WG Biophys J; 1995 Jul; 69(1):4-12. PubMed ID: 7669908 [TBL] [Abstract][Full Text] [Related]
9. Solid state 13C NMR of unlabeled phosphatidylcholine bilayers: spectral assignments and measurement of carbon-phosphorus dipolar couplings and 13C chemical shift anisotropies. Sanders CR Biophys J; 1993 Jan; 64(1):171-81. PubMed ID: 8431541 [TBL] [Abstract][Full Text] [Related]
10. Intermolecular interactions in dry and rehydrated pure and mixed bilayers of phosphatidylcholine and digalactosyldiacylglycerol: a Fourier transform infrared spectroscopy study. Popova AV; Hincha DK Biophys J; 2003 Sep; 85(3):1682-90. PubMed ID: 12944283 [TBL] [Abstract][Full Text] [Related]
11. Effect of the chirality of the glycerol backbone on the bilayer and nonbilayer phase transitions in the diastereomers of di-dodecyl-beta-D-glucopyranosyl glycerol. Mannock DA; Lewis RN; McElhaney RN; Akiyama M; Yamada H; Turner DC; Gruner SM Biophys J; 1992 Nov; 63(5):1355-68. PubMed ID: 1477284 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional structure of glycolipids in biological membranes. DeMarco ML Biochemistry; 2012 Jul; 51(29):5725-32. PubMed ID: 22794115 [TBL] [Abstract][Full Text] [Related]
13. Structure and dynamics of sialic acid at the surface of a magnetically oriented membrane system. Aubin Y; Prestegard JH Biochemistry; 1993 Apr; 32(13):3422-8. PubMed ID: 8461305 [TBL] [Abstract][Full Text] [Related]
14. Dihedral angles of tripeptides in solution directly determined by polarized Raman and FTIR spectroscopy. Schweitzer-Stenner R Biophys J; 2002 Jul; 83(1):523-32. PubMed ID: 12080139 [TBL] [Abstract][Full Text] [Related]
15. Effect of independent variations in fatty acid structure and chain length on lipid polar headgroup composition in Acholeplasma laidlawii B membranes: regulation of lamellar/nonlamellar phase propensity. Yue AW; Wong BC; Rieder J; Lewis RN; Mannock DA; McElhaney RN Biochemistry; 2003 Feb; 42(5):1309-17. PubMed ID: 12564934 [TBL] [Abstract][Full Text] [Related]
16. Cooperative dynamics of quasi-1D lipid structures and lateral transport in biological membranes. Kadantsev VN; Tverdislov VA; Yakovenko LV; Kadantsev VV Gen Physiol Biophys; 1997 Dec; 16(4):311-9. PubMed ID: 9595300 [TBL] [Abstract][Full Text] [Related]
17. Lipid conformation in crystalline bilayers and in crystals of transmembrane proteins. Marsh D; Páli T Chem Phys Lipids; 2006 Jun; 141(1-2):48-65. PubMed ID: 16603141 [TBL] [Abstract][Full Text] [Related]
18. DFT and NMR studies of 2JCOH, 3JHCOH, and 3JCCOH spin-couplings in saccharides: C-O torsional bias and H-bonding in aqueous solution. Zhao H; Pan Q; Zhang W; Carmichael I; Serianni AS J Org Chem; 2007 Sep; 72(19):7071-82. PubMed ID: 17316047 [TBL] [Abstract][Full Text] [Related]
19. Characterization of protein-glycolipid recognition at the membrane bilayer. Evans SV; Roger MacKenzie C J Mol Recognit; 1999; 12(3):155-68. PubMed ID: 10398406 [TBL] [Abstract][Full Text] [Related]
20. Orientation of the saccharide chains of glycolipids at the membrane surface: conformational analysis of the glucose-ceramide and the glucose-glyceride linkages using molecular mechanics (MM3). Nyholm PG; Pascher I Biochemistry; 1993 Feb; 32(5):1225-34. PubMed ID: 8448133 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]