BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 8457890)

  • 1. Regrowth of motor axons following spinal cord lesions: distribution of laminin and collagen in the CNS scar tissue.
    Risling M; Fried K; Linda H; Carlstedt T; Cullheim S
    Brain Res Bull; 1993; 30(3-4):405-14. PubMed ID: 8457890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in nerve growth factor receptor-like immunoreactivity in the spinal cord after ventral funiculus lesion in adult cats.
    Risling M; Fried K; Lindå H; Cullheim S; Meier M
    J Neurocytol; 1992 Feb; 21(2):79-93. PubMed ID: 1313859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth-modulating molecules are associated with invading Schwann cells and not astrocytes in human traumatic spinal cord injury.
    Buss A; Pech K; Kakulas BA; Martin D; Schoenen J; Noth J; Brook GA
    Brain; 2007 Apr; 130(Pt 4):940-53. PubMed ID: 17314203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Axonal regeneration through the fibrous scar in lesioned goldfish spinal cord.
    Takeda A; Atobe Y; Kadota T; Goris RC; Funakoshi K
    Neuroscience; 2015 Jan; 284():134-152. PubMed ID: 25290012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinal axons in central nervous system scar tissue are closely related to laminin-immunoreactive astrocytes.
    Frisén J; Haegerstrand A; Risling M; Fried K; Johansson CB; Hammarberg H; Elde R; Hökfelt T; Cullheim S
    Neuroscience; 1995 Mar; 65(1):293-304. PubMed ID: 7753403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of motoneurons underlying their regenerative capacity after axon lesions in the ventral funiculus or at the surface of the spinal cord.
    Cullheim S; Wallquist W; Hammarberg H; Lindå H; Piehl F; Carlstedt T; Risling M
    Brain Res Brain Res Rev; 2002 Oct; 40(1-3):309-16. PubMed ID: 12589929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of matrix metalloproteinases during axonal regeneration in the goldfish spinal cord.
    Takeda A; Kanemura A; Funakoshi K
    J Chem Neuroanat; 2021 Dec; 118():102041. PubMed ID: 34774721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A persistent defect in the blood-brain barrier after ventral funiculus lesion in adult cats: implications for CNS regeneration?
    Risling M; Lindå H; Cullheim S; Franson P
    Brain Res; 1989 Aug; 494(1):13-21. PubMed ID: 2765912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collagen matrix in spinal cord injury.
    Klapka N; Müller HW
    J Neurotrauma; 2006; 23(3-4):422-35. PubMed ID: 16629627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of insulin-like growth factors and corresponding binding proteins (IGFBP 1-6) in rat spinal cord and peripheral nerve after axonal injuries.
    Hammarberg H; Risling M; Hökfelt T; Cullheim S; Piehl F
    J Comp Neurol; 1998 Oct; 400(1):57-72. PubMed ID: 9762866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacological Suppression of CNS Scarring by Deferoxamine Reduces Lesion Volume and Increases Regeneration in an In Vitro Model for Astroglial-Fibrotic Scarring and in Rat Spinal Cord Injury In Vivo.
    Vogelaar CF; König B; Krafft S; Estrada V; Brazda N; Ziegler B; Faissner A; Müller HW
    PLoS One; 2015; 10(7):e0134371. PubMed ID: 26222542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The collagenous lesion scar--an obstacle for axonal regeneration in brain and spinal cord injury.
    Hermanns S; Klapka N; Müller HW
    Restor Neurol Neurosci; 2001; 19(1-2):139-48. PubMed ID: 12082234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of type IV collagen and other basement-membrane-associated proteins after spinal cord injury of the adult rat may participate in formation of the glial scar.
    Liesi P; Kauppila T
    Exp Neurol; 2002 Jan; 173(1):31-45. PubMed ID: 11771937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elimination of basal lamina and the collagen "scar" after spinal cord injury fails to augment corticospinal tract regeneration.
    Weidner N; Grill RJ; Tuszynski MH
    Exp Neurol; 1999 Nov; 160(1):40-50. PubMed ID: 10630189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth of ascending spinal axons in CNS scar tissue.
    Frisén J; Fried K; Sjögren AM; Risling M
    Int J Dev Neurosci; 1993 Aug; 11(4):461-75. PubMed ID: 7694445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adhesive/repulsive properties in the injured spinal cord: relation to myelin phagocytosis by invading macrophages.
    Frisén J; Haegerstrand A; Fried K; Piehl F; Cullheim S; Risling M
    Exp Neurol; 1994 Oct; 129(2):183-93. PubMed ID: 7957733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reinnervation of the ventral root L7 from ventral horn neurons following intramedullary axotomy in adult cats.
    Risling M; Cullheim S; Hildebrand C
    Brain Res; 1983 Nov; 280(1):15-23. PubMed ID: 6197138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preferential regeneration of spinal axons through the scar in hemisected lamprey spinal cord.
    Lurie DI; Selzer ME
    J Comp Neurol; 1991 Nov; 313(4):669-79. PubMed ID: 1783686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collagen IV deposits do not prevent regrowing axons from penetrating the lesion site in spinal cord injury.
    Joosten EA; Dijkstra S; Brook GA; Veldman H; Bär PR
    J Neurosci Res; 2000 Dec; 62(5):686-91. PubMed ID: 11104506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regeneration of axons from the adult rat optic nerve: influence of fetal brain grafts, laminin, and artificial basement membrane.
    Hausmann B; Sievers J; Hermanns J; Berry M
    J Comp Neurol; 1989 Mar; 281(3):447-66. PubMed ID: 2703556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.