These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

508 related articles for article (PubMed ID: 8458342)

  • 1. OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences.
    Murzin AG
    EMBO J; 1993 Mar; 12(3):861-7. PubMed ID: 8458342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Familiar strangers.
    Murzin AG
    Nature; 1992 Dec; 360(6405):635. PubMed ID: 1465124
    [No Abstract]   [Full Text] [Related]  

  • 3. OB-fold: growing bigger with functional consistency.
    Agrawal V; Kishan KV
    Curr Protein Pept Sci; 2003 Jun; 4(3):195-206. PubMed ID: 12769718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR structure of a stable "OB-fold" sub-domain isolated from staphylococcal nuclease.
    Alexandrescu AT; Gittis AG; Abeygunawardana C; Shortle D
    J Mol Biol; 1995 Jul; 250(2):134-43. PubMed ID: 7608966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of a new heat-labile enterotoxin, LT-IIb.
    van den Akker F; Sarfaty S; Twiddy EM; Connell TD; Holmes RK; Hol WG
    Structure; 1996 Jun; 4(6):665-78. PubMed ID: 8805549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Refined structure of Escherichia coli heat-labile enterotoxin, a close relative of cholera toxin.
    Sixma TK; Kalk KH; van Zanten BA; Dauter Z; Kingma J; Witholt B; Hol WG
    J Mol Biol; 1993 Apr; 230(3):890-918. PubMed ID: 8478941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the B-pentamers of heat-labile enterotoxin and verotoxin-1: two structures with remarkable similarity and dissimilarity.
    Sixma TK; Stein PE; Hol WG; Read RJ
    Biochemistry; 1993 Jan; 32(1):191-8. PubMed ID: 8418837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partially folded states of staphylococcal nuclease highlight the conserved structural hierarchy of OB-fold proteins.
    Watson E; Matousek WM; Irimies EL; Alexandrescu AT
    Biochemistry; 2007 Aug; 46(33):9484-94. PubMed ID: 17661445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BOF: a novel family of bacterial OB-fold proteins.
    Ginalski K; Kinch L; Rychlewski L; Grishin NV
    FEBS Lett; 2004 Jun; 567(2-3):297-301. PubMed ID: 15178340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular basis for the folding of β-helical autotransporter passenger domains.
    Yuan X; Johnson MD; Zhang J; Lo AW; Schembri MA; Wijeyewickrema LC; Pike RN; Huysmans GHM; Henderson IR; Leyton DL
    Nat Commun; 2018 Apr; 9(1):1395. PubMed ID: 29643377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution structure of the active domain of tissue inhibitor of metalloproteinases-2. A new member of the OB fold protein family.
    Williamson RA; Martorell G; Carr MD; Murphy G; Docherty AJ; Freedman RB; Feeney J
    Biochemistry; 1994 Oct; 33(39):11745-59. PubMed ID: 7918391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel binding site identified in a hybrid between cholera toxin and heat-labile enterotoxin: 1.9 A crystal structure reveals the details.
    Holmner A; Lebens M; Teneberg S; Angström J; Okvist M; Krengel U
    Structure; 2004 Sep; 12(9):1655-67. PubMed ID: 15341730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis and modeling of heat-labile enterotoxins of Escherichia coli suggests a novel space with insights into receptor preference.
    Krishna Raja M; Ghosh AR; Vino S; Sajitha Lulu S
    J Biomol Struct Dyn; 2015; 33(8):1805-18. PubMed ID: 25375068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-discriminating and discriminating aspartyl-tRNA synthetases differ in the anticodon-binding domain.
    Charron C; Roy H; Blaise M; Giegé R; Kern D
    EMBO J; 2003 Apr; 22(7):1632-43. PubMed ID: 12660169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for differential receptor binding of cholera and Escherichia coli heat-labile toxins: influence of heterologous amino acid substitutions in the cholera B-subunit.
    Bäckström M; Shahabi V; Johansson S; Teneberg S; Kjellberg A; Miller-Podraza H; Holmgren J; Lebens M
    Mol Microbiol; 1997 May; 24(3):489-97. PubMed ID: 9179843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli.
    Sixma TK; Pronk SE; Kalk KH; Wartna ES; van Zanten BA; Witholt B; Hol WG
    Nature; 1991 May; 351(6325):371-7. PubMed ID: 2034287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural foundation for the design of receptor antagonists targeting Escherichia coli heat-labile enterotoxin.
    Merritt EA; Sarfaty S; Feil IK; Hol WG
    Structure; 1997 Nov; 5(11):1485-99. PubMed ID: 9384564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural studies of receptor binding by cholera toxin mutants.
    Merritt EA; Sarfaty S; Jobling MG; Chang T; Holmes RK; Hirst TR; Hol WG
    Protein Sci; 1997 Jul; 6(7):1516-28. PubMed ID: 9232653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of Vibrio cholera toxin and the heat-labile enterotoxin of Escherichia coli to GM1, derivatives of GM1, and nonlipid oligosaccharide polyvalent ligands.
    Schengrund CL; Ringler NJ
    J Biol Chem; 1989 Aug; 264(22):13233-7. PubMed ID: 2666416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anticodon-binding domain swapping in a nondiscriminating aspartyl-tRNA synthetase reveals contributions to tRNA specificity and catalytic activity.
    Chuawong P; Likittrakulwong W; Suebka S; Wiriyatanakorn N; Saparpakorn P; Taweesablamlert A; Sudprasert W; Hendrickson T; Svasti J
    Proteins; 2020 Sep; 88(9):1133-1142. PubMed ID: 32067260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.