These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 8458820)
41. Understanding the Calculation of Central Venous-to-Arterial CO2 Difference/Arterial-Central Venous O2 Difference Ratio. He H; Liu D Shock; 2017 Dec; 48(6):690. PubMed ID: 28614142 [No Abstract] [Full Text] [Related]
42. Analysis of end-tidal and arterial PCO2 gradients using a breathing model. Benallal H; Busso T Eur J Appl Physiol; 2000 Nov; 83(4 -5):402-8. PubMed ID: 11138582 [TBL] [Abstract][Full Text] [Related]
43. Simultaneous blood-tissue exchange of oxygen, carbon dioxide, bicarbonate, and hydrogen ion. Dash RK; Bassingthwaighte JB Ann Biomed Eng; 2006 Jul; 34(7):1129-48. PubMed ID: 16775761 [TBL] [Abstract][Full Text] [Related]
44. Modelling (18)O2 and (16)O2 unidirectional fluxes in plants. IV: role of conductance and laws of its regulation in C3 plants. André MJ Biosystems; 2013 Aug; 113(2):115-26. PubMed ID: 23318161 [TBL] [Abstract][Full Text] [Related]
45. [Visceral resorption of intra-abdominal insufflated carbon dioxide in swine]. Blobner M; Bogdanski R; Jelen-Esselborn S; Henke J; Erhard W; Kochs E Anasthesiol Intensivmed Notfallmed Schmerzther; 1999 Feb; 34(2):94-9. PubMed ID: 10189522 [TBL] [Abstract][Full Text] [Related]
46. Contribution of PO2, P50, and Hb to changes in arteriovenous O2 content during exercise in heart failure. Perego GB; Marenzi GC; Guazzi M; Sganzerla P; Assanelli E; Palermo P; Conconi B; Lauri G; Agostoni PG J Appl Physiol (1985); 1996 Feb; 80(2):623-31. PubMed ID: 8929607 [TBL] [Abstract][Full Text] [Related]
47. [The status of arterial and mixed venous blood gases in the initial phase of intubation apnea. Studies on the Christiansen-Douglas-Haldane effect]. Brandt L; Mertzlufft F; Dick W Anaesthesist; 1989 Apr; 38(4):167-73. PubMed ID: 2499211 [TBL] [Abstract][Full Text] [Related]
48. [Laparoscopic cholecystectomy--effect of position changes and CO2 pneumoperitoneum on hemodynamic, respiratory and endocrinologic parameters]. Berg K; Wilhelm W; Grundmann U; Ladenburger A; Feifel G; Mertzlufft F Zentralbl Chir; 1997; 122(5):395-404. PubMed ID: 9334103 [TBL] [Abstract][Full Text] [Related]
49. Combining image-derived and venous input functions enables quantification of serotonin-1A receptors with [carbonyl-11C]WAY-100635 independent of arterial sampling. Hahn A; Nics L; Baldinger P; Ungersböck J; Dolliner P; Frey R; Birkfellner W; Mitterhauser M; Wadsak W; Karanikas G; Kasper S; Lanzenberger R Neuroimage; 2012 Aug; 62(1):199-206. PubMed ID: 22579604 [TBL] [Abstract][Full Text] [Related]
50. Impaired carbon dioxide transport during and after cardiopulmonary bypass. Cavaliere F Perfusion; 2000 Sep; 15(5):433-9. PubMed ID: 11001166 [TBL] [Abstract][Full Text] [Related]
51. Noninvasive determination of cardiac output in patients with severe airflow limitation. Lands LC; Canny G; Xu F; Coates AL Am J Respir Crit Care Med; 1996 Mar; 153(3):981-4. PubMed ID: 8630583 [TBL] [Abstract][Full Text] [Related]
52. (13) CO2 /(12) CO2 exchange fluxes in a clamp-on leaf cuvette: disentangling artefacts and flux components. Gong XY; Schäufele R; Feneis W; Schnyder H Plant Cell Environ; 2015 Nov; 38(11):2417-32. PubMed ID: 25944155 [TBL] [Abstract][Full Text] [Related]
53. [The effect of sufentanil on cerebral blood flow, cerebral metabolism and the CO2 reactivity of the cerebral vessels in man]. Stephan H; Gröger P; Weyland A; Hoeft A; Sonntag H Anaesthesist; 1991 Mar; 40(3):153-60. PubMed ID: 1827962 [TBL] [Abstract][Full Text] [Related]
54. Control and consequences of adrenergic activation of red blood cell Na+/H+ exchange on blood oxygen and carbon dioxide transport in fish. Thomas S; Perry SF J Exp Zool; 1992 Aug; 263(2):160-75. PubMed ID: 1323642 [TBL] [Abstract][Full Text] [Related]
55. Sublingual capnometry versus traditional markers of tissue oxygenation in critically ill patients. Marik PE; Bankov A Crit Care Med; 2003 Mar; 31(3):818-22. PubMed ID: 12626990 [TBL] [Abstract][Full Text] [Related]
56. Roles of CO2, O2, and acid in arteriovenous [H+] difference during muscle contractions. Stainsby WN; Eitzman PD J Appl Physiol (1985); 1988 Oct; 65(4):1803-10. PubMed ID: 2846498 [TBL] [Abstract][Full Text] [Related]
57. Clarification on the Method of Calculating Central Venous-to-Arterial CO2 Difference/Arterial-Central Venous O2 Difference Ratio. Shaban M; Salahuddin N Shock; 2017 Dec; 48(6):690-691. PubMed ID: 28614143 [No Abstract] [Full Text] [Related]
58. Central venous-to-arterial CO2 difference/arterial-central venous O2 difference ratio: An experimental model or a bedside clinical tool? He HW; Liu DW J Crit Care; 2016 Oct; 35():219-20. PubMed ID: 27259589 [No Abstract] [Full Text] [Related]
59. Venous-to-arterial carbon dioxide difference: an experimental model or a bedside clinical tool? Møller MH; Cecconi M Intensive Care Med; 2016 Feb; 42(2):287-9. PubMed ID: 26679697 [No Abstract] [Full Text] [Related]
60. Evaluation of Potential Effects of Increased Outdoor Temperatures Due to Global Warming on Cerebral Blood Flow Rate and Respiratory Function in Chronic Obstructive Disease and Anemia. Bozkurt S; Bozkurt S Glob Chall; 2023 Oct; 7(10):2300120. PubMed ID: 37829676 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]