These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 8459449)

  • 21. ATP-sensitive K+ channel modification by metabolic inhibition in isolated guinea-pig ventricular myocytes.
    Deutsch N; Weiss JN
    J Physiol; 1993 Jun; 465():163-79. PubMed ID: 8229832
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Block of large conductance Ca(2+)-activated K+ channels in rabbit vascular myocytes by internal Mg2+ and Na+.
    Morales E; Cole WC; Remillard CV; Leblane N
    J Physiol; 1996 Sep; 495 ( Pt 3)(Pt 3):701-16. PubMed ID: 8887777
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modulation of the effect of glibenclamide on KATP channels by ATP and ADP.
    Virág L; Furukawa T; Hiraoka M
    Mol Cell Biochem; 1993 Feb; 119(1-2):209-15. PubMed ID: 8455581
    [TBL] [Abstract][Full Text] [Related]  

  • 24. HOE-234, a second generation K+ channel opener, antagonizes the ATP-dependent gating of cardiac ATP-sensitive K+ channels.
    Terzic A; Jahangir A; Kurachi Y
    J Pharmacol Exp Ther; 1994 Feb; 268(2):818-25. PubMed ID: 8113994
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calcium-activated potassium channels in native endothelial cells from rabbit aorta: conductance, Ca2+ sensitivity and block.
    Rusko J; Tanzi F; van Breemen C; Adams DJ
    J Physiol; 1992 Sep; 455():601-21. PubMed ID: 1484364
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two sites for adenine-nucleotide regulation of ATP-sensitive potassium channels in mouse pancreatic beta-cells and HIT cells.
    Hopkins WF; Fatherazi S; Peter-Riesch B; Corkey BE; Cook DL
    J Membr Biol; 1992 Sep; 129(3):287-95. PubMed ID: 1433280
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Time-dependent fading of the activation of KATP channels, induced by aprikalim and nucleotides, in excised membrane patches from cardiac myocytes.
    Thuringer D; Cavero I; Coraboeuf E
    Br J Pharmacol; 1995 May; 115(1):117-27. PubMed ID: 7647966
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ATP-sensitive K(+)-channel run-down is Mg2+ dependent.
    Kozlowski RZ; Ashford ML
    Proc R Soc Lond B Biol Sci; 1990 Jun; 240(1298):397-410. PubMed ID: 1974057
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activation of ATP-sensitive K channels by a K channel opener (SR 44866) and the effect upon electrical and mechanical activity of frog skeletal muscle.
    Sauviat MP; Ecault E; Faivre JF; Findlay I
    Pflugers Arch; 1991 Apr; 418(3):261-5. PubMed ID: 1649991
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulation of Ca2+-activated K+ channels by Mg2+ and ATP in frog oxyntic cells.
    Komatsu H; Mieno H; Tamaki K; Inoue M; Kajiyama G; Seyama I
    Pflugers Arch; 1996 Feb; 431(4):494-503. PubMed ID: 8596691
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cytosolic nucleotides enhance the tolbutamide sensitivity of the ATP-dependent K+ channel in mouse pancreatic B cells by their combined actions at inhibitory and stimulatory receptors.
    Schwanstecher C; Dickel C; Panten U
    Mol Pharmacol; 1992 Mar; 41(3):480-6. PubMed ID: 1545776
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of cytosolic ATP and other nucleotides on Ca2+-activated K+ channels in cultured bovine adrenal chromaffin cells.
    Chen C; Houchi H; Tamaki T; Nakaya Y
    Eur J Pharmacol; 1998 Jun; 350(2-3):293-9. PubMed ID: 9696420
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activation of ATP-dependent K+ currents in intact skeletal muscle fibres by reduced intracellular pH.
    Standen NB; Pettit AI; Davies NW; Stanfield PR
    Proc Biol Sci; 1992 Mar; 247(1320):195-8. PubMed ID: 1350098
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activation of ATP-dependent K+ channels by metabolic poisoning in adult mouse skeletal muscle: role of intracellular Mg(2+) and pH.
    Allard B; Lazdunski M; Rougier O
    J Physiol; 1995 Jun; 485 ( Pt 2)(Pt 2):283-96. PubMed ID: 7666359
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A rate theory model for Mg2+ block of ATP-dependent potassium channels of rat skeletal muscle.
    Davies NW; McKillen HC; Stanfield PR; Standen NB
    J Physiol; 1996 Feb; 490 ( Pt 3)(Pt 3):817-26. PubMed ID: 8683479
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pharmacological properties of ATP-sensitive K+ channels in mammalian skeletal muscle cells.
    Allard B; Lazdunski M
    Eur J Pharmacol; 1993 Jun; 236(3):419-26. PubMed ID: 8359200
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Open-state substructure of inwardly rectifying potassium channels revealed by magnesium block in guinea-pig heart cells.
    Matsuda H
    J Physiol; 1988 Mar; 397():237-58. PubMed ID: 2457698
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modification of K-ATP channels in pancreatic beta-cells by trypsin.
    Proks P; Ashcroft FM
    Pflugers Arch; 1993 Jun; 424(1):63-72. PubMed ID: 8351206
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RIN14B: a pancreatic delta-cell line that maintains functional ATP-dependent K+ channels and capability to secrete insulin under conditions where it no longer secretes somatostatin.
    Bränström R; Höög A; Wahl MA; Berggren PO; Larsson O
    FEBS Lett; 1997 Jul; 411(2-3):301-7. PubMed ID: 9271225
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The interaction of nucleotides with the tolbutamide block of cloned ATP-sensitive K+ channel currents expressed in Xenopus oocytes: a reinterpretation.
    Gribble FM; Tucker SJ; Ashcroft FM
    J Physiol; 1997 Oct; 504 ( Pt 1)(Pt 1):35-45. PubMed ID: 9350615
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.