BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 8460131)

  • 21. Affinity labeling of aminoacyl-tRNA synthetases with adenosine triphosphopyridoxal: probing the Lys-Met-Ser-Lys-Ser signature sequence as the ATP-binding site in Escherichia coli methionyl-and valyl-tRNA synthetases.
    Hountondji C; Schmitter JM; Fukui T; Tagaya M; Blanquet S
    Biochemistry; 1990 Dec; 29(51):11266-73. PubMed ID: 2271710
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical modification and site-directed mutagenesis of the single cysteine in motif 3 of class II Escherichia coli prolyl-tRNA synthetase.
    Stehlin C; Heacock DH; Liu H; Musier-Forsyth K
    Biochemistry; 1997 Mar; 36(10):2932-8. PubMed ID: 9062123
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural similarities in glutaminyl- and methionyl-tRNA synthetases suggest a common overall orientation of tRNA binding.
    Perona JJ; Rould MA; Steitz TA; Risler JL; Zelwer C; Brunie S
    Proc Natl Acad Sci U S A; 1991 Apr; 88(7):2903-7. PubMed ID: 2011598
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of a domain-spanning disulfide on aminoacyl-tRNA synthetase activity.
    Banerjee P; Warf MB; Alexander R
    Biochemistry; 2009 Oct; 48(42):10113-9. PubMed ID: 19772352
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The relationship between synthetic and editing functions of the active site of an aminoacyl-tRNA synthetase.
    Kim HY; Ghosh G; Schulman LH; Brunie S; Jakubowski H
    Proc Natl Acad Sci U S A; 1993 Dec; 90(24):11553-7. PubMed ID: 8265588
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RNA binding determinant in some class I tRNA synthetases identified by alignment-guided mutagenesis.
    Shepard A; Shiba K; Schimmel P
    Proc Natl Acad Sci U S A; 1992 Oct; 89(20):9964-8. PubMed ID: 1329109
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Domain-domain communication for tRNA aminoacylation: the importance of covalent connectivity.
    Zhang CM; Hou YM
    Biochemistry; 2005 May; 44(19):7240-9. PubMed ID: 15882062
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insertion of new sequences into the catalytic domain of an enzyme.
    Starzyk RM; Burbaum JJ; Schimmel P
    Biochemistry; 1989 Oct; 28(21):8479-84. PubMed ID: 2690943
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arginine-395 is required for efficient in vivo and in vitro aminoacylation of tRNAs by Escherichia coli methionyl-tRNA synthetase.
    Ghosh G; Kim HY; Demaret JP; Brunie S; Schulman LH
    Biochemistry; 1991 Dec; 30(51):11767-74. PubMed ID: 1751493
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Methionyl-tRNA synthetase of Escherichia coli. A zinc metalloprotein.
    Posorske LH; Cohn M; Yanagisawa N; Auld DS
    Biochim Biophys Acta; 1979 Jan; 576(1):128-33. PubMed ID: 367445
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Zinc-dependent tRNA binding by a peptide element within a tRNA synthetase.
    Glasfeld E; Schimmel P
    Biochemistry; 1997 Jun; 36(22):6739-44. PubMed ID: 9184155
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structure of Escherichia coli methionyl-tRNA synthetase highlights species-specific features.
    Mechulam Y; Schmitt E; Maveyraud L; Zelwer C; Nureki O; Yokoyama S; Konno M; Blanquet S
    J Mol Biol; 1999 Dec; 294(5):1287-97. PubMed ID: 10600385
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystallographic study at 2.5 A resolution of the interaction of methionyl-tRNA synthetase from Escherichia coli with ATP.
    Brunie S; Zelwer C; Risler JL
    J Mol Biol; 1990 Nov; 216(2):411-24. PubMed ID: 2254937
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural homology in the amino-terminal domains of two aminoacyl-tRNA synthetases.
    Blow DM; Bhat TN; Metcalfe A; Risler JL; Brunie S; Zelwer C
    J Mol Biol; 1983 Dec; 171(4):571-6. PubMed ID: 6363712
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methionyl-tRNA synthetase zinc binding domain. Three-dimensional structure and homology with rubredoxin and gag retroviral proteins.
    Fourmy D; Dardel F; Blanquet S
    J Mol Biol; 1993 Jun; 231(4):1078-89. PubMed ID: 8515466
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Escherichia coli YadB gene product reveals a novel aminoacyl-tRNA synthetase like activity.
    Campanacci V; Dubois DY; Becker HD; Kern D; Spinelli S; Valencia C; Pagot F; Salomoni A; Grisel S; Vincentelli R; Bignon C; Lapointe J; Giegé R; Cambillau C
    J Mol Biol; 2004 Mar; 337(2):273-83. PubMed ID: 15003446
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sequence, structural and evolutionary relationships between class 2 aminoacyl-tRNA synthetases.
    Cusack S; Härtlein M; Leberman R
    Nucleic Acids Res; 1991 Jul; 19(13):3489-98. PubMed ID: 1852601
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two separate peptides in Escherichia coli methionyl-tRNA synthetase form the anticodon binding site for methionine tRNA.
    Kim HY; Pelka H; Brunie S; Schulman LH
    Biochemistry; 1993 Oct; 32(39):10506-11. PubMed ID: 8399196
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional structure of methionyl-tRNA synthetase from Pyrococcus abyssi.
    Crepin T; Schmitt E; Blanquet S; Mechulam Y
    Biochemistry; 2004 Mar; 43(9):2635-44. PubMed ID: 14992601
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The zinc-binding site of a class I aminoacyl-tRNA synthetase is a SWIM domain that modulates amino acid binding via the tRNA acceptor arm.
    Banerjee R; Dubois DY; Gauthier J; Lin SX; Roy S; Lapointe J
    Eur J Biochem; 2004 Feb; 271(4):724-33. PubMed ID: 14764088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.