BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

38 related articles for article (PubMed ID: 8460933)

  • 1. The Interaction of Hypericin with SARS-CoV-2 Reveals a Multimodal Antiviral Activity.
    Delcanale P; Uriati E; Mariangeli M; Mussini A; Moreno A; Lelli D; Cavanna L; Bianchini P; Diaspro A; Abbruzzetti S; Viappiani C
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14025-14032. PubMed ID: 35302731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photodynamic viral inactivation: Recent advances and potential applications.
    Willis JA; Cheburkanov V; Kassab G; Soares JM; Blanco KC; Bagnato VS; Yakovlev VV
    Appl Phys Rev; 2021 Jun; 8(2):021315. PubMed ID: 34084253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging paradigms of viral diseases and paramount role of natural resources as antiviral agents.
    Sagaya Jansi R; Khusro A; Agastian P; Alfarhan A; Al-Dhabi NA; Arasu MV; Rajagopal R; Barcelo D; Al-Tamimi A
    Sci Total Environ; 2021 Mar; 759():143539. PubMed ID: 33234268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of small molecules with the SARS-CoV-2 main protease in silico and in vitro validation of potential lead compounds using an enzyme-linked immunosorbent assay.
    Pitsillou E; Liang J; Karagiannis C; Ververis K; Darmawan KK; Ng K; Hung A; Karagiannis TC
    Comput Biol Chem; 2020 Dec; 89():107408. PubMed ID: 33137690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Biochemical and Genetic Basis for the Biosynthesis of Bioactive Compounds in
    Rizzo P; Altschmied L; Ravindran BM; Rutten T; D'Auria JC
    Genes (Basel); 2020 Oct; 11(10):. PubMed ID: 33081197
    [No Abstract]   [Full Text] [Related]  

  • 6. Antimicrobial Photoinactivation Approach Based on Natural Agents for Control of Bacteria Biofilms in Spacecraft.
    Buchovec I; Gricajeva A; Kalėdienė L; Vitta P
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32967302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Medicinal Plants Used in the Treatment of Human Immunodeficiency Virus.
    Salehi B; Kumar NVA; Şener B; Sharifi-Rad M; Kılıç M; Mahady GB; Vlaisavljevic S; Iriti M; Kobarfard F; Setzer WN; Ayatollahi SA; Ata A; Sharifi-Rad J
    Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29757986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypericin in the Light and in the Dark: Two Sides of the Same Coin.
    Jendželovská Z; Jendželovský R; Kuchárová B; Fedoročko P
    Front Plant Sci; 2016; 7():560. PubMed ID: 27200034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacokinetics, safety, and antiviral effects of hypericin, a derivative of St. John's wort plant, in patients with chronic hepatitis C virus infection.
    Jacobson JM; Feinman L; Liebes L; Ostrow N; Koslowski V; Tobia A; Cabana BE; Lee D; Spritzler J; Prince AM
    Antimicrob Agents Chemother; 2001 Feb; 45(2):517-24. PubMed ID: 11158749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A photodynamic pathway to apoptosis and necrosis induced by dimethyl tetrahydroxyhelianthrone and hypericin in leukaemic cells: possible relevance to photodynamic therapy.
    Lavie G; Kaplinsky C; Toren A; Aizman I; Meruelo D; Mazur Y; Mandel M
    Br J Cancer; 1999 Feb; 79(3-4):423-32. PubMed ID: 10027308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-dose and steady-state pharmacokinetics of hypericin and pseudohypericin.
    Kerb R; Brockmöller J; Staffeldt B; Ploch M; Roots I
    Antimicrob Agents Chemother; 1996 Sep; 40(9):2087-93. PubMed ID: 8878586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antiviral activities of anthraquinones, bianthrones and hypericin derivatives from lichens.
    Cohen PA; Hudson JB; Towers GH
    Experientia; 1996 Feb; 52(2):180-3. PubMed ID: 8608821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoinactivation and kinetics of membrane fusion mediated by the human immunodeficiency virus type 1 envelope glycoprotein.
    Dimitrov DS; Blumenthal R
    J Virol; 1994 Mar; 68(3):1956-61. PubMed ID: 8107256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The importance of light in the anti-HIV effect of hypericin.
    Hudson JB; Harris L; Towers GH
    Antiviral Res; 1993 Feb; 20(2):173-8. PubMed ID: 8460933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of oxygen and photoinduced acidification in the light-dependent antiviral activity of hypocrellin A.
    Fehr MJ; Carpenter SL; Wannemuehler Y; Petrich JW
    Biochemistry; 1995 Dec; 34(48):15845-8. PubMed ID: 7495816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antiviral activity of the photoactive plant pigment hypericin.
    Lopez-Bazzocchi I; Hudson JB; Towers GH
    Photochem Photobiol; 1991 Jul; 54(1):95-8. PubMed ID: 1658826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies for evaluation of enveloped virus inactivation in red cell concentrates using hypericin.
    Prince AM; Pascual D; Meruelo D; Liebes L; Mazur Y; Dubovi E; Mandel M; Lavie G
    Photochem Photobiol; 2000 Feb; 71(2):188-95. PubMed ID: 10687393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypericin--a new antiviral and antitumor photosensitizer: mechanism of action and interaction with biological macromolecules.
    Miskovsky P
    Curr Drug Targets; 2002 Feb; 3(1):55-84. PubMed ID: 11899265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The chemical and biological properties of hypericin--a compound with a broad spectrum of biological activities.
    Lavie G; Mazur Y; Lavie D; Meruelo D
    Med Res Rev; 1995 Mar; 15(2):111-9. PubMed ID: 7739292
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.