These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 8460951)

  • 1. Homoserine dehydrogenase-I (Escherichia coli): action of monovalent ions on catalysis and substrate association-dissociation.
    Wedler FC; Ley BW
    Arch Biochem Biophys; 1993 Mar; 301(2):416-23. PubMed ID: 8460951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preferred order random kinetic mechanism for homoserine dehydrogenase of Escherichia coli (Thr-sensitive) aspartokinase/homoserine dehydrogenase-I: equilibrium isotope exchange kinetics.
    Wedler FC; Ley BW; Shames SL; Rembish SJ; Kushmaul DL
    Biochim Biophys Acta; 1992 Mar; 1119(3):247-9. PubMed ID: 1547269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic and regulatory mechanisms for (Escherichia coli) homoserine dehydrogenase-I. Equilibrium isotope exchange kinetics.
    Wedler FC; Ley BW
    J Biol Chem; 1993 Mar; 268(7):4880-8. PubMed ID: 8444866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The kinetic mechanisms of the bifunctional enzyme aspartokinase-homoserine dehydrogenase I from Escherichia coli.
    Angeles TS; Viola RE
    Arch Biochem Biophys; 1990 Nov; 283(1):96-101. PubMed ID: 2241177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aspartokinase I-homoserine dehydrogenase I of Escherichia coli K12 (lambda). Activation by monovalent cations and an analysis of the effect of the adenosine triphosphate-magnesium ion complex on this activation process.
    Ogilvie JW; Vickers LP; Clark RB; Jones MM
    J Biol Chem; 1975 Feb; 250(4):1242-50. PubMed ID: 163250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monovalent cation activation in Escherichia coli inosine 5'-monophosphate dehydrogenase.
    Kerr KM; Cahoon M; Bosco DA; Hedstrom L
    Arch Biochem Biophys; 2000 Mar; 375(1):131-7. PubMed ID: 10683258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible dissociation of aspartokinase I/homoserine dehydrogenase I from Escherichia coli K 12. The active species is the tetramer.
    Veron M; Guillou Y; Fazel A; Cohen GN
    Eur J Biochem; 1985 Sep; 151(3):521-4. PubMed ID: 3896789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proceedings: Organization of Escherichia coli aspartokinase I-Homoserine dehydrogenase I, an allosteric enzyme. -- Its possible origin by gene fusion and its evolutionary relationship with enzymes of the same biochemical pathway.
    Cohen GN
    Hoppe Seylers Z Physiol Chem; 1975 Mar; 356(3):224-5. PubMed ID: 1102410
    [No Abstract]   [Full Text] [Related]  

  • 9. Membrane-bound pyrophosphatase of Thermotoga maritima requires sodium for activity.
    Belogurov GA; Malinen AM; Turkina MV; Jalonen U; Rytkönen K; Baykov AA; Lahti R
    Biochemistry; 2005 Feb; 44(6):2088-96. PubMed ID: 15697234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic and thermodynamic analysis of the interaction of cations with dialkylglycine decarboxylase.
    Liu W; Toney MD
    Biochemistry; 2004 May; 43(17):4998-5010. PubMed ID: 15109259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Threonine-sensitive homoserine dehydrogenase and aspartokinase activities of Escherichia coli K12. Kinetic and spectroscopic effects upon binding of serine and threonine.
    Costrejean JM; Truffa-Bachi P
    J Biol Chem; 1977 Aug; 252(15):5332-6. PubMed ID: 328500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate specificity and kinetic isotope effect analysis of the Eschericia coli ketopantoate reductase.
    Zheng R; Blanchard JS
    Biochemistry; 2003 Sep; 42(38):11289-96. PubMed ID: 14503879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidation of a monovalent cation dependence and characterization of the divalent cation binding site of the fosfomycin resistance protein (FosA).
    Bernat BA; Laughlin LT; Armstrong RN
    Biochemistry; 1999 Jun; 38(23):7462-9. PubMed ID: 10360943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of potential regulatory sites of the Na+,K+-ATPase by kinetic analysis.
    Kong BY; Clarke RJ
    Biochemistry; 2004 Mar; 43(8):2241-50. PubMed ID: 14979720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of the relationships of interactions between Asp-201, Na+ or K+, and galactosyl C6 hydroxyl and their effects on binding and reactivity of beta-galactosidase.
    Xu J; McRae MA; Harron S; Rob B; Huber RE
    Biochem Cell Biol; 2004 Apr; 82(2):275-84. PubMed ID: 15060622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The monovalent cation requirement of rabbit muscle pyruvate kinase is eliminated by substitution of lysine for glutamate 117.
    Laughlin LT; Reed GH
    Arch Biochem Biophys; 1997 Dec; 348(2):262-7. PubMed ID: 9434737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and mechanisms of activation and inhibition of porcine liver fructose-1,6-bisphosphatase by monovalent cations.
    Zhang R; Villeret V; Lipscomb WN; Fromm HJ
    Biochemistry; 1996 Mar; 35(9):3038-43. PubMed ID: 8608143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biosynthesis of threonine by mammalian cells: expression of a complete bacterial biosynthetic pathway in an animal cell.
    Rees WD; Hay SM
    Biochem J; 1995 Aug; 309 ( Pt 3)(Pt 3):999-1007. PubMed ID: 7639721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relaxation studies on an allosteric enzyme: aspartokinase I-homoserine dehydrogenase I.
    Janin J
    Cold Spring Harb Symp Quant Biol; 1972; 36():193-8. PubMed ID: 4404442
    [No Abstract]   [Full Text] [Related]  

  • 20. Dihydrodipicolinate synthase from Escherichia coli: pH dependent changes in the kinetic mechanism and kinetic mechanism of allosteric inhibition by L-lysine.
    Karsten WE
    Biochemistry; 1997 Feb; 36(7):1730-9. PubMed ID: 9048556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.