BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 8462549)

  • 1. Removal of N-terminal formyl groups and deblocking of pyrrolidone carboxylic acid of proteins with anhydrous hydrazine vapor.
    Miyatake N; Kamo M; Satake K; Uchiyama Y; Tsugita A
    Eur J Biochem; 1993 Mar; 212(3):785-9. PubMed ID: 8462549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific chemical cleavage of asparaginyl and glycyl-glycine bonds in peptides and proteins by anhydrous hydrazine vapor.
    Miyatake N; Satake K; Kamo M; Tsugita A
    J Biochem; 1994 Feb; 115(2):208-12. PubMed ID: 8206869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid sequence and D/L-configuration determination of peptides utilizing liberated N-terminus phenylthiohydantoin amino acids.
    Iida T; Matsunaga H; Santa T; Fukushima T; Homma H; Imai K
    J Chromatogr A; 1998 Jul; 813(2):267-75. PubMed ID: 9700927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and characterization of O-biotinylated hydroxy amino acid residues in peptides.
    Miller BT; Rogers ME; Smith JS; Kurosky A
    Anal Biochem; 1994 Jun; 219(2):240-8. PubMed ID: 8080081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A general method for highly selective cross-linking of unprotected polypeptides via pH-controlled modification of N-terminal alpha-amino groups.
    Wetzel R; Halualani R; Stults JT; Quan C
    Bioconjug Chem; 1990; 1(2):114-22. PubMed ID: 2095209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave enhanced Akabori reaction for peptide analysis.
    Bose AK; Ing YH; Lavlinskaia N; Sareen C; Pramanik BN; Bartner PL; Liu YH; Heimark L
    J Am Soc Mass Spectrom; 2002 Jul; 13(7):839-50. PubMed ID: 12148808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequencing of peptides and proteins with blocked N-terminal amino acids: N-acetylserine or N-acetylthreonine.
    Wellner D; Panneerselvam C; Horecker BL
    Proc Natl Acad Sci U S A; 1990 Mar; 87(5):1947-9. PubMed ID: 2106685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutamine as a precursor to N-terminal pyrrolid-2-one-5-carboxylic acid in mouse immunoglobulin lambda-type light chains. Amino acid-sequence variability at the N-terminal extra piece of lambda-type light-chain precursors.
    Burstein Y; Schechter I
    Biochem J; 1977 Aug; 165(2):347-54. PubMed ID: 411485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of the C-terminal amino acid amides by carboxypeptidase Y digestion and fast atom bombardment mass spectrometry.
    Kim J; Kim K
    Biochem Mol Biol Int; 1994 Nov; 34(5):897-907. PubMed ID: 7703906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Weak acid-catalyzed pyrrolidone carboxylic acid formation from glutamine during solid phase peptide synthesis. Minimization by rapid coupling.
    Dimarchi RD; Tam JP; Kent SB; Merrifield RB
    Int J Pept Protein Res; 1982 Jan; 19(1):88-93. PubMed ID: 7118385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of FAB mass spectrometry and pyroglutamate aminopeptidase digestion for the structure determination of pyroglutamate in modified peptides.
    Kim J; Kim K
    Biochem Mol Biol Int; 1995 Apr; 35(4):803-11. PubMed ID: 7627130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boron trifluoride-etherate (Lewis acid) as an efficient acid at cyclization/cleavage reaction of D/L-amino acids affording the retention of their original configuration in the Edman sequencing method of peptides.
    Matsunaga H; Iida T; Fukushima T; Santa T; Homma H; Imai K
    Biomed Chromatogr; 1996; 10(2):95-6. PubMed ID: 8924735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated carboxy-terminal sequence analysis of peptides and proteins using diphenyl phosphoroisothiocyanatidate.
    Bailey JM; Nikfarjam F; Shenoy NR; Shively JE
    Protein Sci; 1992 Dec; 1(12):1622-33. PubMed ID: 1304893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of N-terminal blocking groups from proteins.
    Fowler E; Moyer M; Krishna RG; Chin CC; Wold F
    Curr Protoc Protein Sci; 2001 May; Chapter 11():Unit 11.7. PubMed ID: 18429106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate specificity of glutaminyl cyclases from plants and animals.
    Schilling S; Manhart S; Hoffmann T; Ludwig HH; Wasternack C; Demuth HU
    Biol Chem; 2003 Dec; 384(12):1583-92. PubMed ID: 14719800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of underivatized tetrapeptides by negative-ion fast-atom bombardment mass spectrometry.
    Bradford AM; Waugh RJ; Bowie JH
    Rapid Commun Mass Spectrom; 1995; 9(8):677-85. PubMed ID: 7647365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fragmentation reactions of protonated peptides containing glutamine or glutamic acid.
    Harrison AG
    J Mass Spectrom; 2003 Feb; 38(2):174-87. PubMed ID: 12577284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissociation pathways of alkali-cationized peptides: opportunities for C-terminal peptide sequencing.
    Lin T; Payne AH; Glish GL
    J Am Soc Mass Spectrom; 2001 May; 12(5):497-504. PubMed ID: 11349947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Additional possible tools for identification of proteins on one- or two-dimensional electrophoresis.
    Tsugita A; Kamo M; Miyazaki K; Takayama M; Kawakami T; Shen R; Nozawa T
    Electrophoresis; 1998 May; 19(6):928-38. PubMed ID: 9638939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of methylated asparagine and glutamine residues in polypeptides.
    Klotz AV; Thomas BA; Glazer AN; Blacher RW
    Anal Biochem; 1990 Apr; 186(1):95-100. PubMed ID: 2356973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.