These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 8462726)
1. Inactivation of ornithine decarboxylase by intermediates of tyrosinase-catalyzed reaction. Gómez-Skarmeta JL; Peñafiel R; Galindo JD; Lozano JA Int J Biochem; 1993 Mar; 25(3):353-8. PubMed ID: 8462726 [TBL] [Abstract][Full Text] [Related]
2. The effect of catalase on the inactivation of tyrosinase by ascorbic acid and by cysteine or glutathione. Lindbladh C; Rorsman H; Rosengren E Acta Derm Venereol; 1983; 63(3):209-14. PubMed ID: 6192633 [TBL] [Abstract][Full Text] [Related]
3. Oxidation of 3,4-dihydroxybenzylamine affords 3,4-dihydroxybenzaldehyde via the quinone methide intermediate. Sugumaran M Pigment Cell Res; 1995 Oct; 8(5):250-4. PubMed ID: 8789199 [TBL] [Abstract][Full Text] [Related]
4. L-ornithine-induced inactivation of mammalian ornithine decarboxylase in vitro. Danzin C; Persson L Eur J Biochem; 1987 Jul; 166(1):45-8. PubMed ID: 3595616 [TBL] [Abstract][Full Text] [Related]
5. The role of 2,4,5-trihydroxyphenylalanine in melanin biosynthesis. Graham DG; Jeffs PW J Biol Chem; 1977 Aug; 252(16):5729-34. PubMed ID: 195958 [TBL] [Abstract][Full Text] [Related]
6. The role of sulfhydryl compounds in mammalian melanogenesis: the effect of cysteine and glutathione upon tyrosinase and the intermediates of the pathway. Jara JR; Aroca P; Solano F; Martinez JH; Lozano JA Biochim Biophys Acta; 1988 Nov; 967(2):296-303. PubMed ID: 2903772 [TBL] [Abstract][Full Text] [Related]
7. Regulation of ornithine decarboxylase in B16 mouse melanoma cells: synergistic activation of melanogenesis by alphaMSH and ornithine decarboxylase inhibition. Sanchez Mas J; Martijnez-Esparza M; Bastida CM; Solano F; Penafiel R; Garcija-Borron JC Biochim Biophys Acta; 2002 Jan; 1542(1-3):57-65. PubMed ID: 11853879 [TBL] [Abstract][Full Text] [Related]
8. Effect of thiol compounds on melanin formation by tyrosinase. Sanada H; Suzue R; Nakashima Y; Kawada S Biochim Biophys Acta; 1972 Jan; 261(1):258-66. PubMed ID: 4622270 [No Abstract] [Full Text] [Related]
9. Inactivation of tyrosinase by dopa. Tomita Y; Hariu A; Mizuno C; Seiji M J Invest Dermatol; 1980 Nov; 75(5):379-82. PubMed ID: 6776205 [TBL] [Abstract][Full Text] [Related]
10. Tyrosinase-catalyzed metabolism of rhododendrol (RD) in B16 melanoma cells: production of RD-pheomelanin and covalent binding with thiol proteins. Ito S; Okura M; Nakanishi Y; Ojika M; Wakamatsu K; Yamashita T Pigment Cell Melanoma Res; 2015 May; 28(3):295-306. PubMed ID: 25713930 [TBL] [Abstract][Full Text] [Related]
11. Chemical characterization of pheomelanogenesis starting from dihydroxyphenylalanine or tyrosine and cysteine. Effects of tyrosinase and cysteine concentrations and reaction time. Ozeki H; Ito S; Wakamatsu K; Ishiguro I Biochim Biophys Acta; 1997 Oct; 1336(3):539-48. PubMed ID: 9367182 [TBL] [Abstract][Full Text] [Related]
12. Oxidation of 4-alkylphenols and catechols by tyrosinase: ortho-substituents alter the mechanism of quinoid formation. Krol ES; Bolton JL Chem Biol Interact; 1997 Apr; 104(1):11-27. PubMed ID: 9158692 [TBL] [Abstract][Full Text] [Related]
13. Tyrosinase-catalyzed oxidation of 3,4-dihydroxyphenylglycine. Sugumaran M; Tan S; Sun HL Arch Biochem Biophys; 1996 May; 329(2):175-80. PubMed ID: 8638949 [TBL] [Abstract][Full Text] [Related]
14. Inactivation mechanism of tyrosinase in mouse melanoma. Tomita Y; Seiji M J Dermatol; 1977 Dec; 4(6):245-9. PubMed ID: 15461355 [TBL] [Abstract][Full Text] [Related]
15. Dopamine, in the presence of tyrosinase, covalently modifies and inactivates tyrosine hydroxylase. Xu Y; Stokes AH; Roskoski R; Vrana KE J Neurosci Res; 1998 Dec; 54(5):691-7. PubMed ID: 9843160 [TBL] [Abstract][Full Text] [Related]
16. Tyrosinase: the four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation. Ramsden CA; Riley PA Bioorg Med Chem; 2014 Apr; 22(8):2388-95. PubMed ID: 24656803 [TBL] [Abstract][Full Text] [Related]
17. Direct evidence for quinone-quinone methide tautomerism during tyrosinase catalyzed oxidation of 4-allylcatechol. Sugumaran M; Bolton J Biochem Biophys Res Commun; 1995 Aug; 213(2):469-74. PubMed ID: 7646501 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of human ornithine decarboxylase activity by enantiomers of difluoromethylornithine. Qu N; Ignatenko NA; Yamauchi P; Stringer DE; Levenson C; Shannon P; Perrin S; Gerner EW Biochem J; 2003 Oct; 375(Pt 2):465-70. PubMed ID: 12859253 [TBL] [Abstract][Full Text] [Related]
19. The toxicity of melanin precursors. Graham DG; Tiffany SM; Vogel FS J Invest Dermatol; 1978 Feb; 70(2):113-6. PubMed ID: 413870 [TBL] [Abstract][Full Text] [Related]
20. Formation of a new quinone methide intermediate during the oxidative transformation of 3,4-dihydroxyphenylacetic acids: implication for eumelanin biosynthesis. Sugumaran M; Duggaraju P; Jayachandran E; Kirk KL Arch Biochem Biophys; 1999 Nov; 371(1):98-106. PubMed ID: 10525294 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]