These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 8463299)

  • 41. Probing the Vibrio harveyi luciferase beta subunit functionality and the intersubunit domain by site-directed mutagenesis.
    Xin X; Xi L; Tu SC
    Biochemistry; 1994 Oct; 33(40):12194-201. PubMed ID: 7918440
    [TBL] [Abstract][Full Text] [Related]  

  • 42. QM/MM Molecular Modeling Reveals Mechanism Insights into Flavin Peroxide Formation in Bacterial Luciferase.
    Lawan N; Tinikul R; Surawatanawong P; Mulholland AJ; Chaiyen P
    J Chem Inf Model; 2022 Jan; 62(2):399-411. PubMed ID: 34989561
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Interaction of Photobacterium leiognathi and Vibrio fischeri Y1 luciferases with fluorescent (antenna) proteins: bioluminescence effects of the aliphatic additive.
    Petushkov VN; Ketelaars M; Gibson BG; Lee J
    Biochemistry; 1996 Sep; 35(37):12086-93. PubMed ID: 8810914
    [TBL] [Abstract][Full Text] [Related]  

  • 44. pH-dependent studies reveal an efficient hydroxylation mechanism of the oxygenase component of p-hydroxyphenylacetate 3-hydroxylase.
    Ruangchan N; Tongsook C; Sucharitakul J; Chaiyen P
    J Biol Chem; 2011 Jan; 286(1):223-33. PubMed ID: 21030590
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dynamic fluorescence properties of bacterial luciferase intermediates.
    Lee J; O'Kane DJ; Gibson BG
    Biochemistry; 1988 Jun; 27(13):4862-70. PubMed ID: 3167018
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Differential transfers of reduced flavin cofactor and product by bacterial flavin reductase to luciferase.
    Jeffers CE; Tu SC
    Biochemistry; 2001 Feb; 40(6):1749-54. PubMed ID: 11327836
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modeling of the bacterial luciferase-flavin mononucleotide complex combining flexible docking with structure-activity data.
    Lin LY; Sulea T; Szittner R; Vassilyev V; Purisima EO; Meighen EA
    Protein Sci; 2001 Aug; 10(8):1563-71. PubMed ID: 11468353
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Isolation of bacterial luciferases by affinity chromatography on 2,2-diphenylpropylamine-Sepharose: phosphate-mediated binding to an immobilized substrate analogue.
    Holzman TF; Baldwin TO
    Biochemistry; 1982 Nov; 21(24):6194-201. PubMed ID: 6983889
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Factors affecting the cellular expression of bacterial luciferase.
    Ulitzur S; Reinhertz A; Hastings JW
    Arch Microbiol; 1981 Mar; 129(1):67-71. PubMed ID: 6971634
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Folding of bacterial luciferase involves a non-native heterodimeric intermediate in equilibrium with the native enzyme and the unfolded subunits.
    Clark AC; Sinclair JF; Baldwin TO
    J Biol Chem; 1993 May; 268(15):10773-9. PubMed ID: 8496144
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mutational analysis of the subunit interface of Vibrio harveyi bacterial luciferase.
    Inlow JK; Baldwin TO
    Biochemistry; 2002 Mar; 41(12):3906-15. PubMed ID: 11900533
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Studies on luciferase from Photobacterium phosphoreum. VIII. FMN-H2O2 initiated bioluminescence and the thermodynamics of the elementary steps of the luciferase reaction.
    Watanabe T; Nakamura T
    J Biochem; 1976 Mar; 79(3):489-95. PubMed ID: 950335
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification and characterization of a catalytic base in bacterial luciferase by chemical rescue of a dark mutant.
    Huang S; Tu SC
    Biochemistry; 1997 Dec; 36(48):14609-15. PubMed ID: 9402752
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lactate monooxygenase. I. Expression of the mycobacterial gene in Escherichia coli and site-directed mutagenesis of lysine 266.
    Müh U; Massey V; Williams CH
    J Biol Chem; 1994 Mar; 269(11):7982-8. PubMed ID: 8132518
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bacterial bioluminescence: equilibrium association measurements, quantum yields, reaction kinetics, and overall reaction scheme.
    Lee J; Murphy CL
    Biochemistry; 1975 May; 14(10):2259-68. PubMed ID: 807236
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of the binding of Photobacterium phosphoreum P-flavin by Vibrio harveyi Luciferase.
    Wei CJ; Lei B; Tu SC
    Arch Biochem Biophys; 2001 Dec; 396(2):199-206. PubMed ID: 11747297
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bacterial luciferase: Molecular mechanisms and applications.
    Tinikul R; Chunthaboon P; Phonbuppha J; Paladkong T
    Enzymes; 2020; 47():427-455. PubMed ID: 32951831
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Insight into the chemistry of flavin reduction and oxidation in Escherichia coli dihydroorotate dehydrogenase obtained by rapid reaction studies.
    Palfey BA; Björnberg O; Jensen KF
    Biochemistry; 2001 Apr; 40(14):4381-90. PubMed ID: 11284694
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Activity coupling and complex formation between bacterial luciferase and flavin reductases.
    Tu SC
    Photochem Photobiol Sci; 2008 Feb; 7(2):183-8. PubMed ID: 18264585
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spectral detection of an intermediate preceding the excited state in the bacterial luciferase reaction.
    Macheroux P; Ghisla S; Hastings JW
    Biochemistry; 1993 Dec; 32(51):14183-6. PubMed ID: 8260504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.