BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 8463303)

  • 1. Inhibition of macrophage-mediated low density lipoprotein oxidation by stimulated rat serosal mast cells.
    Lindstedt KA
    J Biol Chem; 1993 Apr; 268(11):7741-6. PubMed ID: 8463303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of copper-mediated oxidation of LDL by rat serosal mast cells. A novel cellular protective mechanism involving proteolysis of the substrate under oxidative stress.
    Lindstedt KA; Kokkonen JO; Kovanen PT
    Arterioscler Thromb; 1993 Jan; 13(1):23-32. PubMed ID: 8422337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulation of mast cells leads to cholesterol accumulation in macrophages in vitro by a mast cell granule-mediated uptake of low density lipoprotein.
    Kokkonen JO; Kovanen PT
    Proc Natl Acad Sci U S A; 1987 Apr; 84(8):2287-91. PubMed ID: 3470793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mast cell granule-mediated uptake of low density lipoproteins by macrophages: a novel carrier mechanism leading to the formation of foam cells.
    Kovanen PT
    Ann Med; 1991; 23(5):551-9. PubMed ID: 1756025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-density-lipoprotein binding by mast-cell granules. Demonstration of binding of apolipoprotein B to heparin proteoglycan of exocytosed granules.
    Kokkonen JO; Kovanen PT
    Biochem J; 1987 Jan; 241(2):583-9. PubMed ID: 3593208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulation of low density lipoproteins in stimulated rat serosal mast cells during recovery from degranulation.
    Kokkonen JO; Kovanen PT
    J Lipid Res; 1989 Sep; 30(9):1341-8. PubMed ID: 2480988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soluble heparin proteoglycans released from stimulated mast cells induce uptake of low density lipoproteins by macrophages via scavenger receptor-mediated phagocytosis.
    Lindstedt KA; Kokkonen JO; Kovanen PT
    J Lipid Res; 1992 Jan; 33(1):65-75. PubMed ID: 1552234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The metabolism of low density lipoproteins by rat serosal mast cells.
    Kokkonen JO; Kovanen PT
    Eur Heart J; 1990 Aug; 11 Suppl E():134-46. PubMed ID: 2226522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulation of rat peritoneal mast cells enhances uptake of low density lipoproteins by rat peritoneal macrophages in vivo.
    Kokkonen JO
    Atherosclerosis; 1989 Oct; 79(2-3):213-23. PubMed ID: 2597229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mast cell--a potential link between inflammation and cellular cholesterol deposition in atherogenesis.
    Kovanen PT
    Eur Heart J; 1993 Dec; 14 Suppl K():105-17. PubMed ID: 8131778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteolysis and fusion of low density lipoprotein particles independently strengthen their binding to exocytosed mast cell granules.
    Paananen K; Kovanen PT
    J Biol Chem; 1994 Jan; 269(3):2023-31. PubMed ID: 8294453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of mast cell-dependent conversion of cultured macrophages into foam cells with antiallergic drugs.
    Ma H; Kovanen PT
    Arterioscler Thromb Vasc Biol; 2000 Dec; 20(12):E134-42. PubMed ID: 11116078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IgE-dependent generation of foam cells: an immune mechanism involving degranulation of sensitized mast cells with resultant uptake of LDL by macrophages.
    Ma H; Kovanen PT
    Arterioscler Thromb Vasc Biol; 1995 Jun; 15(6):811-9. PubMed ID: 7773738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteolytic enzymes of mast cell granules degrade low density lipoproteins and promote their granule-mediated uptake by macrophages in vitro.
    Kokkonen JO; Kovanen PT
    J Biol Chem; 1989 Jun; 264(18):10749-55. PubMed ID: 2659592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of LDL in mast cells recovering from degranulation. Description of a novel intracellular pathway leading to proteolytic modification of the lipoprotein.
    Kokkonen JO; Lindstedt KA; Kovanen PT
    Arterioscler Thromb; 1993 Feb; 13(2):276-85. PubMed ID: 8427862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low density lipoprotein degradation by rat mast cells. Demonstration of extracellular proteolysis caused by mast cell granules.
    Kokkonen JO; Kovanen PT
    J Biol Chem; 1985 Nov; 260(27):14756-63. PubMed ID: 3902839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hibiscus anthocyanins-rich extract inhibited LDL oxidation and oxLDL-mediated macrophages apoptosis.
    Chang YC; Huang KX; Huang AC; Ho YC; Wang CJ
    Food Chem Toxicol; 2006 Jul; 44(7):1015-23. PubMed ID: 16473450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macrophage glutathione content and glutathione peroxidase activity are inversely related to cell-mediated oxidation of LDL: in vitro and in vivo studies.
    Rosenblat M; Aviram M
    Free Radic Biol Med; 1998 Jan; 24(2):305-17. PubMed ID: 9433906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human (THP-1) macrophages oxidize LDL by a thiol-dependent mechanism.
    Graham A; Wood JL; O'Leary VJ; Stone D
    Free Radic Res; 1996 Aug; 25(2):181-92. PubMed ID: 8885336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of low density lipoprotein oxidation by thyronines and probucol.
    Hanna AN; Feller DR; Witiak DT; Newman HA
    Biochem Pharmacol; 1993 Feb; 45(3):753-62. PubMed ID: 8442772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.