BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 8463304)

  • 1. Phosphorylation of peptide substrates for the catalytic subunit of cAMP-dependent protein kinase.
    Adams JA; Taylor SS
    J Biol Chem; 1993 Apr; 268(11):7747-52. PubMed ID: 8463304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energetic limits of phosphotransfer in the catalytic subunit of cAMP-dependent protein kinase as measured by viscosity experiments.
    Adams JA; Taylor SS
    Biochemistry; 1992 Sep; 31(36):8516-22. PubMed ID: 1390637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rate-determining steps for tyrosine phosphorylation by the kinase domain of v-fps.
    Wang C; Lee TR; Lawrence DS; Adams JA
    Biochemistry; 1996 Feb; 35(5):1533-9. PubMed ID: 8634284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic analysis of cAMP-dependent protein kinase: mutations at histidine 87 affect peptide binding and pH dependence.
    Cox S; Taylor SS
    Biochemistry; 1995 Dec; 34(49):16203-9. PubMed ID: 8519778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH dependence of the kinetic mechanism of the adenosine 3',5'-monophosphate dependent protein kinase catalytic subunit in the direction of magnesium adenosine 5'-diphosphate phosphorylation.
    Qamar R; Cook PF
    Biochemistry; 1993 Jul; 32(26):6802-6. PubMed ID: 8329403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation modulates catalytic function and regulation in the cAMP-dependent protein kinase.
    Adams JA; McGlone ML; Gibson R; Taylor SS
    Biochemistry; 1995 Feb; 34(8):2447-54. PubMed ID: 7873523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divalent metal ions influence catalysis and active-site accessibility in the cAMP-dependent protein kinase.
    Adams JA; Taylor SS
    Protein Sci; 1993 Dec; 2(12):2177-86. PubMed ID: 8298463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the substrate specificity of cAMP-dependent protein kinase using diastereomeric peptides.
    Eller M; Sepp A; Toomik R; Ekman P; Järv J; Ragnarsson U; Engström L
    Biochem Int; 1991 Oct; 25(3):453-60. PubMed ID: 1805790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of electrostatic interactions that determine the phosphorylation site specificity of the cAMP-dependent protein kinase.
    Gibbs CS; Zoller MJ
    Biochemistry; 1991 Jun; 30(22):5329-34. PubMed ID: 2036400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational, kinetic, and NMR studies of the mechanism of E. coli GDP-mannose mannosyl hydrolase, an unusual Nudix enzyme.
    Legler PM; Massiah MA; Mildvan AS
    Biochemistry; 2002 Sep; 41(35):10834-48. PubMed ID: 12196023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of mutations of the active site arginine residues in 4-oxalocrotonate tautomerase on the pKa values of active site residues and on the pH dependence of catalysis.
    Czerwinski RM; Harris TK; Johnson WH; Legler PM; Stivers JT; Mildvan AS; Whitman CP
    Biochemistry; 1999 Sep; 38(38):12358-66. PubMed ID: 10493803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of activation of cAMP-dependent protein kinase: in Mucor rouxii the apparent specific activity of the cAMP-activated holoenzyme is different than that of its free catalytic subunit.
    Zaremberg V; Donella-Deana A; Moreno S
    Arch Biochem Biophys; 2000 Sep; 381(1):74-82. PubMed ID: 11019822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple arginine residues contribute to the increased efficacy of peptide substrates for the cAMP-dependent protein kinase.
    Prorok M; Lawrence DS
    Biochem Biophys Res Commun; 1989 Nov; 165(1):368-71. PubMed ID: 2590233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pre-steady-state kinetic analysis of cAMP-dependent protein kinase using rapid quench flow techniques.
    Grant BD; Adams JA
    Biochemistry; 1996 Feb; 35(6):2022-9. PubMed ID: 8639687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic studies on thrombin catalysis.
    Stone SR; Betz A; Hofsteenge J
    Biochemistry; 1991 Oct; 30(41):9841-8. PubMed ID: 1911776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for ecto-protein kinase activity that phosphorylates Kemptide in a cyclic AMP-dependent mode.
    Kübler D; Pyerin W; Bill O; Hotz A; Sonka J; Kinzel V
    J Biol Chem; 1989 Aug; 264(24):14549-55. PubMed ID: 2547801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A protonated histidine residue in a phosphorylation site for cyclic AMP-dependent protein kinase. Comparison of a synthetic peptide with the exposed linking region in the multienzyme polypeptide CAD.
    Carrey EA
    Biochem J; 1992 Nov; 287 ( Pt 3)(Pt 3):791-5. PubMed ID: 1359877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic hexapeptide substrates and inhibitors of 3':5'-cyclic AMP-dependent protein kinase.
    Kemp BE; Benjamini E; Krebs EG
    Proc Natl Acad Sci U S A; 1976 Apr; 73(4):1038-42. PubMed ID: 177970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation of connexin 32, a hepatocyte gap-junction protein, by cAMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin-dependent protein kinase II.
    Sáez JC; Nairn AC; Czernik AJ; Spray DC; Hertzberg EL; Greengard P; Bennett MV
    Eur J Biochem; 1990 Sep; 192(2):263-73. PubMed ID: 2170122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation by cyclic GMP-dependent protein kinase of a synthetic peptide corresponding to the autophosphorylation site in the enzyme.
    Glass DB; Smith SB
    J Biol Chem; 1983 Dec; 258(24):14797-803. PubMed ID: 6317673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.