BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 8463348)

  • 1. Plasma protein adsorption to hemodialysis membranes: studies in an in vitro model.
    Parzer S; Balcke P; Mannhalter C
    J Biomed Mater Res; 1993 Apr; 27(4):455-63. PubMed ID: 8463348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of plasma proteins adsorbed to hemodialyzers during clinical use.
    Mulzer SR; Brash JL
    J Biomed Mater Res; 1989 Dec; 23(12):1483-504. PubMed ID: 2621220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ immunoradiometric assay of fibrinogen adsorbed to artificial surfaces.
    Chuang HY
    J Biomed Mater Res; 1984; 18(5):547-59. PubMed ID: 6736083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Possible clinical effects of the interaction of hemodialysis membranes with adhesion proteins.
    Baumgartner-Parzer SM; Seyfert UT; Mannhalter C
    Kidney Int; 1995 Apr; 47(4):1115-20. PubMed ID: 7540231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomics characterization of protein adsorption onto hemodialysis membranes.
    Bonomini M; Pavone B; Sirolli V; Del Buono F; Di Cesare M; Del Boccio P; Amoroso L; Di Ilio C; Sacchetta P; Federici G; Urbani A
    J Proteome Res; 2006 Oct; 5(10):2666-74. PubMed ID: 17022637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of plasma proteins with artificial surfaces: protein adsorption isotherms.
    Chuang HY; King WF; Mason RG
    J Lab Clin Med; 1978 Sep; 92(3):483-96. PubMed ID: 681830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased binding of beta-2-microglobulin to blood cells in dialysis patients treated with high-flux dialyzers compared with low-flux membranes contributed to reduced beta-2-microglobulin concentrations. Results of a cross-over study.
    Traut M; Haufe CC; Eismann U; Deppisch RM; Stein G; Wolf G
    Blood Purif; 2007; 25(5-6):432-40. PubMed ID: 17957097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic analysis of protein adsorption capacity of different haemodialysis membranes.
    Urbani A; Lupisella S; Sirolli V; Bucci S; Amoroso L; Pavone B; Pieroni L; Sacchetta P; Bonomini M
    Mol Biosyst; 2012 Apr; 8(4):1029-39. PubMed ID: 22249890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mediators of complement-independent granulocyte activation during haemodialysis: role of calcium, prostaglandins and leukotrienes.
    Böhler J; Donauer J; Birmelin M; Schollmeyer PJ; Hörl WH
    Nephrol Dial Transplant; 1993; 8(12):1359-65. PubMed ID: 8159305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of proteins absorbed to hemodialyser membranes from heparinized plasma.
    Cornelius RM; Brash JL
    J Biomater Sci Polym Ed; 1993; 4(3):291-304. PubMed ID: 8476796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of proteins in human plasma with modified polystyrene resins.
    Boisson-Vidal C; Jozefonvicz J; Brash JL
    J Biomed Mater Res; 1991 Jan; 25(1):67-84. PubMed ID: 2019612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatibility of hemodialysis using cuprophane membranes.
    Rommes JH; Sangster B; Borst C; Daha MR; van Heijst NP
    Vet Hum Toxicol; 1987 Aug; 29(4):293-9. PubMed ID: 3629907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Comparison of biocompatibility of hemophane, cellulose diacetate and acrilonitile membranes in hemodialysis].
    Germin Petrović D
    Acta Med Croatica; 2004; 58(1):31-6. PubMed ID: 15125391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of biocompatibility of different dialyzer membranes: role of complement system, intracellular calcium and inositol-triphosphate.
    Haag-Weber M; Mai B; Deppisch R; Göhl H; Hörl WH
    Clin Nephrol; 1994 Apr; 41(4):245-51. PubMed ID: 8026120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of proteins adsorbed from human plasma to glass bead columns: plasmin-induced degradation of adsorbed fibrinogen.
    Brash JL; Thibodeau JA
    J Biomed Mater Res; 1986; 20(9):1263-75. PubMed ID: 2946694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteins adsorbed on hemodialysis membranes modulate neutrophil activation.
    Kuwahara T; Markert M; Wauters JP
    Artif Organs; 1989 Oct; 13(5):427-31. PubMed ID: 2803051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatible dialysis membranes and acute renal failure: a study in post-operative acute tubular necrosis in cadaveric renal transplant recipients.
    Valeri A; Radhakrishnan J; Ryan R; Powell D
    Clin Nephrol; 1996 Dec; 46(6):402-9. PubMed ID: 8982557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyacrylonitrile membranes in hemodialysis: blood-surface interactions.
    Barozzi C; Cairo G; Fumero R; Scuri S; Tanzi MC; Albonico P
    Life Support Syst; 1985; 3 Suppl 1():490-4. PubMed ID: 3870612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein adsorption and platelet adhesion on the surface of an oxygenator membrane.
    Niimi Y; Yamane S; Yamaji K; Tayama E; Sueoka A; Nosé Y
    ASAIO J; 1997; 43(5):M706-10. PubMed ID: 9360138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of hemodialysis (HD) membranes on interleukin 1-beta (IL-1 beta) production from peripheral blood mononuclear cells (PBMC).
    Momoi T; Ono M; Takagi T; Sugiura S; Ogawa H; Saito A
    Clin Nephrol; 1995 Nov; 44 Suppl 1():S24-8. PubMed ID: 8608657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.