These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Partial replacement of dietary fish oil with blends of vegetable oils (rapeseed, linseed and palm oils) in diets for European sea bass (Dicentrarchus labrax L.) over a long term growth study: effects on muscle and liver fatty acid composition and effectiveness of a fish oil finishing diet. Mourente G; Bell JG Comp Biochem Physiol B Biochem Mol Biol; 2006; 145(3-4):389-99. PubMed ID: 17055762 [TBL] [Abstract][Full Text] [Related]
3. Tissue essential fatty acid composition and competitive response to dietary manipulations in white bass (Morone chrysops), striped bass (M. saxatilis) and hybrid striped bass (M. chrysopsxM. saxatilis). Harel M; Place AR Comp Biochem Physiol B Biochem Mol Biol; 2003 May; 135(1):83-94. PubMed ID: 12781976 [TBL] [Abstract][Full Text] [Related]
4. Dietary choline requirement of juvenile hybrid striped bass. Griffin ME; Wilson KA; White MR; Brown PB J Nutr; 1994 Sep; 124(9):1685-9. PubMed ID: 8089736 [TBL] [Abstract][Full Text] [Related]
5. Dietary polyunsaturated fatty acids (C18:2 omega6 and C18:3 omega3) do not suppress hepatic lipogenesis. Sealls W; Gonzalez M; Brosnan MJ; Black PN; DiRusso CC Biochim Biophys Acta; 2008 Aug; 1781(8):406-14. PubMed ID: 18655845 [TBL] [Abstract][Full Text] [Related]
6. Dietary fish oil and digestible protein modify susceptibility to lipid peroxidation in the muscle of rainbow trout (Oncorhynchus mykiss) and sea bass (Dicentrarchus labrax). Alvarez MJ; Lopez-Bote CJ; Diez A; Corraze G; Arzel J; Dias J; Kaushik SJ; Bautista JM Br J Nutr; 1998 Sep; 80(3):281-9. PubMed ID: 9875068 [TBL] [Abstract][Full Text] [Related]
7. Hybrid striped bass feeds based on fish oil, beef tallow, and eicosapentaenoic acid/docosahexaenoic acid supplements: Insight regarding fish oil sparing and demand for -3 long-chain polyunsaturated fatty acids. Bowzer J; Jackson C; Trushenski J J Anim Sci; 2016 Mar; 94(3):978-88. PubMed ID: 27065260 [TBL] [Abstract][Full Text] [Related]
8. The dietary lysine requirement of juvenile hybrid striped bass. Griffin ME; Brown PB; Grant AL J Nutr; 1992 Jun; 122(6):1332-7. PubMed ID: 1588450 [TBL] [Abstract][Full Text] [Related]
9. Dietary source of stearidonic acid promotes higher muscle DHA concentrations than linolenic acid in hybrid striped bass. Bharadwaj AS; Hart SD; Brown BJ; Li Y; Watkins BA; Brown PB Lipids; 2010 Jan; 45(1):21-7. PubMed ID: 20049582 [TBL] [Abstract][Full Text] [Related]
10. Efficacy of purified nucleotide supplements on the growth performance and immunity of hybrid striped bass Morone chrysops x Morone saxatilis. de Cruz CR; Yamamoto FY; Ju M; Chen K; Velasquez A; Gatlin DM Fish Shellfish Immunol; 2020 Mar; 98():868-874. PubMed ID: 31751660 [TBL] [Abstract][Full Text] [Related]
11. Ontogenic effects of early feeding of sea bass (Dicentrarchus labrax) larvae with a range of dietary n-3 highly unsaturated fatty acid levels on the functioning of polyunsaturated fatty acid desaturation pathways. Vagner M; Robin JH; Zambonino-Infante JL; Tocher DR; Person-Le Ruyet J Br J Nutr; 2009 May; 101(10):1452-62. PubMed ID: 18838020 [TBL] [Abstract][Full Text] [Related]
12. Modification of fillet composition and evidence of differential fatty acid turnover in sunshine bass Morone chrysops x M. saxatilis following change in dietary lipid source. Lane RL; Trushenski JT; Kohler CC Lipids; 2006 Nov; 41(11):1029-38. PubMed ID: 17263302 [TBL] [Abstract][Full Text] [Related]
13. Effect of dietary n-3 fatty acids on weight gain and liver polar lipid fatty acid composition of fingerling channel catfish. Satoh S; Poe WE; Wilson RP J Nutr; 1989 Jan; 119(1):23-8. PubMed ID: 2913232 [TBL] [Abstract][Full Text] [Related]
14. Dietary vitamin C and vitamin E interact to influence growth and tissue composition of juvenile hybrid striped bass (Morone chrysops (female) x M. saxatilis (male)) but have limited effects on immune responses. Sealey WM; Gatlin DM J Nutr; 2002 Apr; 132(4):748-55. PubMed ID: 11925472 [TBL] [Abstract][Full Text] [Related]
15. Dietary fatty acid composition affects the repeat swimming performance of Atlantic salmon in seawater. Wagner GN; Balfry SK; Higgs DA; Lall SP; Farrell AP Comp Biochem Physiol A Mol Integr Physiol; 2004 Mar; 137(3):567-76. PubMed ID: 15123193 [TBL] [Abstract][Full Text] [Related]
16. Dietary oligonucleotides from yeast RNA influence immune responses and resistance of hybrid striped bass (Morone chrysops x Morone saxatilis) to Streptococcus iniae infection. Li P; Lewis DH; Gatlin DM Fish Shellfish Immunol; 2004 May; 16(5):561-9. PubMed ID: 15110330 [TBL] [Abstract][Full Text] [Related]
17. Dietary conjugated linoleic acids and lipid source alter fatty acid composition of juvenile yellow perch, Perca flavescens. Twibell RG; Watkins BA; Brown PB J Nutr; 2001 Sep; 131(9):2322-8. PubMed ID: 11533274 [TBL] [Abstract][Full Text] [Related]
18. Dietary glycine supplementation enhances the growth performance of hybrid striped bass (Morone saxatilis ♀× Morone chrysops ♂) fed soybean meal-based diets. Li X; He W; Wu G J Anim Sci; 2023 Jan; 101():. PubMed ID: 37801645 [TBL] [Abstract][Full Text] [Related]
19. Fatty acid composition and lipid peroxidation of soft-shelled turtle, Pelodiscus sinensis, fed different dietary lipid sources. Lin WY; Huang CH Comp Biochem Physiol C Toxicol Pharmacol; 2007 Jan; 144(4):327-33. PubMed ID: 17137843 [TBL] [Abstract][Full Text] [Related]
20. Designing fish for improved human health status. Cotter PA; McLean E; Craig SR Nutr Health; 2009; 20(1):1-9. PubMed ID: 19326715 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]