These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 8464807)

  • 21. Investigation of using pectin and chitosan as natural excipients in pellet formulation.
    Nejati L; Kalantari F; Bavarsad N; Saremnejad F; Moghaddam PT; Akhgari A
    Int J Biol Macromol; 2018 Dec; 120(Pt A):1208-1215. PubMed ID: 30165148
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formulation and evaluation of mefenamic acid sustained release matrix pellets.
    Ibrahim MA
    Acta Pharm; 2013 Mar; 63(1):85-98. PubMed ID: 23482315
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combined effects of wetting, drying, and microcrystalline cellulose type on the mechanical strength and disintegration of pellets.
    Balaxi M; Nikolakakis I; Kachrimanis K; Malamataris S
    J Pharm Sci; 2009 Feb; 98(2):676-89. PubMed ID: 18548618
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct compression of cushion-layered ethyl cellulose-coated extended release pellets into rapidly disintegrating tablets without changes in the release profile.
    Hosseini A; Körber M; Bodmeier R
    Int J Pharm; 2013 Dec; 457(2):503-9. PubMed ID: 23892153
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influences of layering on theophylline pellet characteristics.
    Sinchaipanid N; Chitropas P; Mitrevej A
    Pharm Dev Technol; 2004; 9(2):163-70. PubMed ID: 15202575
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation of lovastatin matrix sustained-release pellets by extrusion-spheronization combined with microcrystal dispersion technique.
    He H; Shi B; Cai C; Tang X
    Arch Pharm Res; 2011 Nov; 34(11):1931-8. PubMed ID: 22139692
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of microcrystalline cellulose grade on shape and shape distributions of pellets produced by extrusion-spheronization.
    Koo OM; Heng PW
    Chem Pharm Bull (Tokyo); 2001 Nov; 49(11):1383-7. PubMed ID: 11724226
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A mechanistic understanding of compression damage to the dissolubility of coated pellets in tablets.
    Hiew TN; Tian YH; Tan HM; Heng PWS
    Eur J Pharm Biopharm; 2020 Jan; 146():93-100. PubMed ID: 31786321
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of kappa-carrageenan as alternative pelletisation aid to microcrystalline cellulose in extrusion/spheronisation. I. Influence of type and fraction of filler.
    Thommes M; Kleinebudde P
    Eur J Pharm Biopharm; 2006 May; 63(1):59-67. PubMed ID: 16326085
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of Ceolus™ microcrystalline cellulose grades for the direct compression of enteric-coated pellets.
    Kucera SU; DiNunzio JC; Kaneko N; McGinity JW
    Drug Dev Ind Pharm; 2012 Mar; 38(3):341-50. PubMed ID: 21870908
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of the type of cellulose on properties of multi-unit target releasing in stomach dosage form with verapamil hydrochloride.
    Sawicki W; Łunio R; Walentynowicz O; Kubasik-Juraniec J
    Acta Pol Pharm; 2007; 64(1):81-8. PubMed ID: 17665855
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controlled drug release from pellets containing water-insoluble drugs dissolved in a self-emulsifying system.
    Serratoni M; Newton M; Booth S; Clarke A
    Eur J Pharm Biopharm; 2007 Jan; 65(1):94-8. PubMed ID: 17056237
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microstructural and drug release properties of oven-dried and of slowly or fast frozen freeze-dried MCC-Carbopol pellets.
    Gómez-Carracedo A; Souto C; Martínez-Pacheco R; Concheiro A; Gómez-Amoza JL
    Eur J Pharm Biopharm; 2007 Aug; 67(1):236-45. PubMed ID: 17317125
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Co-processed MCC-Eudragit® E excipients for extrusion-spheronization.
    Goyanes A; Souto C; Martínez-Pacheco R
    Eur J Pharm Biopharm; 2011 Nov; 79(3):658-63. PubMed ID: 21827853
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extrusion-Spheronization of blends of carbopol 934 and microcrystalline cellulose.
    Gómez-Carracedo A; Alvarez-Lorenzo C; Gómez-Amoza JL; Martínez-Pacheco R; Souto C; Concheiro A
    Drug Dev Ind Pharm; 2001 May; 27(5):381-91. PubMed ID: 11448045
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of the coat quality of sustained release pellets by individual pellet dissolution methodology.
    Xu M; Liew CV; Heng PWS
    Int J Pharm; 2015 Jan; 478(1):318-327. PubMed ID: 25435182
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Formulation and characterization of a compacted multiparticulate system for modified release of water-soluble drugs--Part II theophylline and cimetidine.
    Cantor SL; Hoag SW; Augsburger LL
    Drug Dev Ind Pharm; 2009 May; 35(5):568-82. PubMed ID: 18979306
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of к-carrageenan, chitosan and Carbopol 974P in extruded and spheronized pellets that are devoid of MCC.
    Valle BL; Omwancha WS; Neau SH; Wigent RJ
    Drug Dev Ind Pharm; 2016 Nov; 42(11):1903-16. PubMed ID: 27100683
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Drug release from MCC- and carrageenan-based pellets: experiment and theory.
    Kranz H; Jürgens K; Pinier M; Siepmann J
    Eur J Pharm Biopharm; 2009 Oct; 73(2):302-9. PubMed ID: 19465119
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A flexible technology for modified-release drugs: multiple-unit pellet system (MUPS).
    Abdul S; Chandewar AV; Jaiswal SB
    J Control Release; 2010 Oct; 147(1):2-16. PubMed ID: 20493217
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.