These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
366 related articles for article (PubMed ID: 8465600)
1. Galactose inhibition of the constitutive transport of hexoses in Saccharomyces cerevisiae. Nevado J; Navarro MA; Heredia CF Yeast; 1993 Feb; 9(2):111-9. PubMed ID: 8465600 [TBL] [Abstract][Full Text] [Related]
2. Impairment by hexoses of the utilization of maltose by Saccharomyces cerevisiae. Heredia CF Biochim Biophys Acta; 1998 Sep; 1425(1):151-8. PubMed ID: 9813297 [TBL] [Abstract][Full Text] [Related]
3. Transport of hexoses in yeast. Re-examination of the sugar phosphorylation hypothesis with a new experimental approach. Nevado J; Navarro MA; Heredia CF Yeast; 1994 Jan; 10(1):59-65. PubMed ID: 8203152 [TBL] [Abstract][Full Text] [Related]
4. Galactose induces in Saccharomyces cerevisiae sensitivity of the utilization of hexoses to inhibition by D-glucosamine. Nevado J; Heredia CF Can J Microbiol; 1996 Jan; 42(1):6-11. PubMed ID: 8595596 [TBL] [Abstract][Full Text] [Related]
5. Regulatory properties of the constitutive hexose transport in Saccharomyces cerevisiae. Serrano R; Delafuente G Mol Cell Biochem; 1974 Dec; 5(3):161-71. PubMed ID: 4614087 [No Abstract] [Full Text] [Related]
6. Carbohydrate transport in Moniliformis dubius (Acanthocephala). III. Post-absorptive fate of fructose, mannose, and galactose. Starling JA; Fisher FM J Parasitol; 1979 Feb; 65(1):8-13. PubMed ID: 448603 [TBL] [Abstract][Full Text] [Related]
7. Transport and transport-associated phosphorylation of galactose in Saccharomyces cerevisiae. van Steveninck J Biochim Biophys Acta; 1972 Aug; 274(2):575-83. PubMed ID: 4558852 [No Abstract] [Full Text] [Related]
8. Carbohydrate transport in Moniliformis dubius (Acanthocephala). I. The kinetics and specificity of hexose absorption. Starling JA; Fisher FM J Parasitol; 1975 Dec; 61(6):977-90. PubMed ID: 1195077 [TBL] [Abstract][Full Text] [Related]
9. Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process. Rolland F; De Winde JH; Lemaire K; Boles E; Thevelein JM; Winderickx J Mol Microbiol; 2000 Oct; 38(2):348-58. PubMed ID: 11069660 [TBL] [Abstract][Full Text] [Related]
10. Strain variations in the utilization of hexoses by Ehrlich ascites tumor cells. Letnansky K Biochim Biophys Acta; 1968 Oct; 165(3):364-73. PubMed ID: 5737930 [No Abstract] [Full Text] [Related]
11. Hexose transport regulation in cultured hamster cells. Christopher CW J Supramol Struct; 1977; 6(4):485-94. PubMed ID: 563495 [TBL] [Abstract][Full Text] [Related]
12. Properties of the hexose transport systems of Aspergillus nidulans. Mark CG; Romano AH Biochim Biophys Acta; 1971 Oct; 249(1):216-26. PubMed ID: 4946621 [No Abstract] [Full Text] [Related]
13. Gpr1p, a putative G-protein coupled receptor, regulates glucose-dependent cellular cAMP level in yeast Saccharomyces cerevisiae. Yun CW; Tamaki H; Nakayama R; Yamamoto K; Kumagai H Biochem Biophys Res Commun; 1998 Nov; 252(1):29-33. PubMed ID: 9813141 [TBL] [Abstract][Full Text] [Related]
14. [Research on the intestinal absorption of hexoses. II. Effects of some simple diets on the in vivo intestinal absorption of fructose]. Crouzoulon-Bourcart C; Crouzoulon G; Pérès G C R Seances Soc Biol Fil; 1971; 165(5):1071-4. PubMed ID: 4261487 [No Abstract] [Full Text] [Related]
15. Expression and activity of the Hxt7 high-affinity hexose transporter of Saccharomyces cerevisiae. Ye L; Berden JA; van Dam K; Kruckeberg AL Yeast; 2001 Sep; 18(13):1257-67. PubMed ID: 11561293 [TBL] [Abstract][Full Text] [Related]
16. Competitive kinetics of sugar active transport in snail intestine. Barber A; Jordana R; Ponz F Rev Esp Fisiol; 1979 Jun; 35(2):243-8. PubMed ID: 482723 [TBL] [Abstract][Full Text] [Related]
17. Utilization of hexoses and synthesis of glycogen in two strains of HeLa cells. Melnykovych G; Bishop CF In Vitro; 1972; 7(6):397-405. PubMed ID: 5041244 [No Abstract] [Full Text] [Related]
18. The low-affinity component of the glucose transport system in Saccharomyces cerevisiae is not due to passive diffusion. Gamo FJ; Moreno E; Lagunas R Yeast; 1995 Nov; 11(14):1393-8. PubMed ID: 8585322 [TBL] [Abstract][Full Text] [Related]
19. Characterisation of mammalian GLUT glucose transporters in a heterologous yeast expression system. Wieczorke R; Dlugai S; Krampe S; Boles E Cell Physiol Biochem; 2003; 13(3):123-34. PubMed ID: 12876383 [TBL] [Abstract][Full Text] [Related]
20. Carbon catabolite repression of invertase during batch cultivations of Saccharomyces cerevisiae: the role of glucose, fructose, and mannose. Dynesen J; Smits HP; Olsson L; Nielsen J Appl Microbiol Biotechnol; 1998 Nov; 50(5):579-82. PubMed ID: 9866176 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]