BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 8466217)

  • 1. Cutaneous T-cell recruitment in toxic epidermal necrolysis. Further evidence of CD8+ lymphocyte involvement.
    Correia O; Delgado L; Ramos JP; Resende C; Torrinha JA
    Arch Dermatol; 1993 Apr; 129(4):466-8. PubMed ID: 8466217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impaired antigen presentation in toxic epidermal necrolysis.
    Bagot M; Charue D; Heslan M; Wechsler J; Roujeau JC; Revuz J
    Arch Dermatol; 1993 Jun; 129(6):721-7. PubMed ID: 8507074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of mechanisms in toxic epidermal necrolysis induced by carbamazepine.
    Friedmann PS; Strickland I; Pirmohamed M; Park BK
    Arch Dermatol; 1994 May; 130(5):598-604. PubMed ID: 8179341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxic epidermal necrolysis: effector cells are drug-specific cytotoxic T cells.
    Nassif A; Bensussan A; Boumsell L; Deniaud A; Moslehi H; Wolkenstein P; Bagot M; Roujeau JC
    J Allergy Clin Immunol; 2004 Nov; 114(5):1209-15. PubMed ID: 15536433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The CD40/CD40 ligand system is expressed in the cutaneous lesions of erythema multiforme and Stevens-Johnson syndrome/toxic epidermal necrolysis spectrum.
    Caproni M; Torchia D; Schincaglia E; Volpi W; Frezzolini A; Schena D; Marzano A; Quaglino P; De Simone C; Parodi A; Barletta E; Fabbri P
    Br J Dermatol; 2006 Feb; 154(2):319-24. PubMed ID: 16433803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. T-cell subsets in drug-induced toxic epidermal necrolysis. Possible pathogenic mechanism induced by CD8-positive T cells.
    Miyauchi H; Hosokawa H; Akaeda T; Iba H; Asada Y
    Arch Dermatol; 1991 Jun; 127(6):851-5. PubMed ID: 2036032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo dynamics of intraepidermal CD8+ T cells and CD4+ T cells during the evolution of fixed drug eruption.
    Mizukawa Y; Yamazaki Y; Shiohara T
    Br J Dermatol; 2008 Jun; 158(6):1230-8. PubMed ID: 18363767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Animal models of toxic epidermal necrolysis.
    Azukizawa H
    J Dermatol; 2011 Mar; 38(3):255-60. PubMed ID: 21342227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lymphocyte subsets and Langerhans' cells in toxic epidermal necrolysis. Report of a case.
    Merot Y; Gravallese E; Guillén FJ; Murphy GF
    Arch Dermatol; 1986 Apr; 122(4):455-8. PubMed ID: 2937370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macrophages and tumor necrosis factor alpha in toxic epidermal necrolysis.
    Paquet P; Nikkels A; Arrese JE; Vanderkelen A; Piérard GE
    Arch Dermatol; 1994 May; 130(5):605-8. PubMed ID: 8179342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow cytometric characterization of human umbilical cord blood lymphocytes: immunophenotypic features.
    D'Arena G; Musto P; Cascavilla N; Di Giorgio G; Fusilli S; Zendoli F; Carotenuto M
    Haematologica; 1998 Mar; 83(3):197-203. PubMed ID: 9573672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CD8+ epidermotropic cytotoxic T-cell lymphoma with peripheral blood and central nervous system involvement.
    Introcaso CE; Kim EJ; Gardner J; Junkins-Hopkins JM; Vittorio CC; Rook AH
    Arch Dermatol; 2008 Aug; 144(8):1027-9. PubMed ID: 18711076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionally active macrophage-derived myeloperoxidase in the skin of drug-induced toxic epidermal necrolysis.
    Paquet P; De Groote D; Piérard GE
    Dermatology; 2010; 220(3):201-7. PubMed ID: 20332596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective migration of the human helper-inducer memory T cell subset: confirmation by in vivo cellular kinetic studies.
    Pitzalis C; Kingsley GH; Covelli M; Meliconi R; Markey A; Panayi GS
    Eur J Immunol; 1991 Feb; 21(2):369-76. PubMed ID: 1671837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Use of flow cytometry in evaluation of cellular changes in interstitial lung diseases].
    Kopiński P
    Folia Med Cracov; 1997; 38(3-4):69-115. PubMed ID: 10481384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of toxic epidermal necrolysis after the early administration of a single high dose of intravenous immunoglobulin.
    Mayorga C; Torres MJ; Corzo JL; Sanchez-Sabate E; Alvarez J; Vera A; Posadas S; Jurado A; Blanca M
    Ann Allergy Asthma Immunol; 2003 Jul; 91(1):86-91. PubMed ID: 12877456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of cytokines and chemokine receptors in the cutaneous lesions of erythema multiforme and Stevens-Johnson syndrome/toxic epidermal necrolysis.
    Caproni M; Torchia D; Schincaglia E; Volpi W; Frezzolini A; Schena D; Marzano A; Quaglino P; De Simone C; Parodi A; Barletta E; Fabbri P
    Br J Dermatol; 2006 Oct; 155(4):722-8. PubMed ID: 16965421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epidermal interleukin-8 and its receptor CXCR2 in drug-induced toxic epidermal necrolysis.
    Paquet P; Ribbens C; Piérard GE
    Clin Exp Dermatol; 2007 Nov; 32(6):728-32. PubMed ID: 17714530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stevens-Johnson syndrome and toxic epidermal necrolysis.
    Borchers AT; Lee JL; Naguwa SM; Cheema GS; Gershwin ME
    Autoimmun Rev; 2008 Sep; 7(8):598-605. PubMed ID: 18603022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human epidermal cells from ultraviolet light-exposed skin preferentially activate autoreactive CD4+2H4+ suppressor-inducer lymphocytes and CD8+ suppressor/cytotoxic lymphocytes.
    Baadsgaard O; Fox DA; Cooper KD
    J Immunol; 1988 Mar; 140(6):1738-44. PubMed ID: 2964481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.