BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 8466475)

  • 1. Interaction of rhodopsin with the G-protein, transducin.
    Hargrave PA; Hamm HE; Hofmann KP
    Bioessays; 1993 Jan; 15(1):43-50. PubMed ID: 8466475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of rhodopsin-transducin interaction: a mutant rhodopsin photoproduct with a protonated Schiff base activates transducin.
    Zvyaga TA; Fahmy K; Sakmar TP
    Biochemistry; 1994 Aug; 33(32):9753-61. PubMed ID: 8068654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three cytoplasmic loops of rhodopsin interact with transducin.
    König B; Arendt A; McDowell JH; Kahlert M; Hargrave PA; Hofmann KP
    Proc Natl Acad Sci U S A; 1989 Sep; 86(18):6878-82. PubMed ID: 2780545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for structural changes in carboxyl-terminal peptides of transducin alpha-subunit upon binding a soluble mimic of light-activated rhodopsin.
    Brabazon DM; Abdulaev NG; Marino JP; Ridge KD
    Biochemistry; 2003 Jan; 42(2):302-11. PubMed ID: 12525157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhodopsin's carboxyl-terminal threonines are required for wild-type arrestin-mediated quench of transducin activation in vitro.
    Brannock MT; Weng K; Robinson PR
    Biochemistry; 1999 Mar; 38(12):3770-7. PubMed ID: 10090766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutation of the fourth cytoplasmic loop of rhodopsin affects binding of transducin and peptides derived from the carboxyl-terminal sequences of transducin alpha and gamma subunits.
    Ernst OP; Meyer CK; Marin EP; Henklein P; Fu WY; Sakmar TP; Hofmann KP
    J Biol Chem; 2000 Jan; 275(3):1937-43. PubMed ID: 10636895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural studies of metarhodopsin II, the activated form of the G-protein coupled receptor, rhodopsin.
    Choi G; Landin J; Galan JF; Birge RR; Albert AD; Yeagle PL
    Biochemistry; 2002 Jun; 41(23):7318-24. PubMed ID: 12044163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signal transfer from rhodopsin to the G-protein: evidence for a two-site sequential fit mechanism.
    Kisselev OG; Meyer CK; Heck M; Ernst OP; Hofmann KP
    Proc Natl Acad Sci U S A; 1999 Apr; 96(9):4898-903. PubMed ID: 10220390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhodopsin, light-sensor of vision.
    Hofmann KP; Lamb TD
    Prog Retin Eye Res; 2023 Mar; 93():101116. PubMed ID: 36273969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The molecular origin of the inhibition of transducin activation in rhodopsin lacking the 9-methyl group of the retinal chromophore: a UV-Vis and FTIR spectroscopic study.
    Vogel R; Fan GB; Sheves M; Siebert F
    Biochemistry; 2000 Aug; 39(30):8895-908. PubMed ID: 10913302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and function in rhodopsin: covalent crosslinking of the rhodopsin (metarhodopsin II)-transducin complex--the rhodopsin cytoplasmic face links to the transducin alpha subunit.
    Resek JF; Farrens D; Khorana HG
    Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7643-7. PubMed ID: 8052635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of metarhodopsin II. Arrestin peptides compete with arrestin and transducin.
    Pulvermüller A; Schroder K; Fischer T; Hofmann KP
    J Biol Chem; 2000 Dec; 275(48):37679-85. PubMed ID: 10969086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrophobic amino acids at the cytoplasmic ends of helices 3 and 6 of rhodopsin conjointly modulate transducin activation.
    Bosch-Presegué L; Iarriccio L; Aguilà M; Toledo D; Ramon E; Cordomí A; Garriga P
    Arch Biochem Biophys; 2011 Feb; 506(2):142-9. PubMed ID: 21114958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The membrane complex between transducin and dark-state rhodopsin exhibits large-amplitude interface dynamics on the sub-microsecond timescale: insights from all-atom MD simulations.
    Sgourakis NG; Garcia AE
    J Mol Biol; 2010 Apr; 398(1):161-73. PubMed ID: 20184892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhodopsin-interacting surface of the transducin gamma subunit.
    Kisselev OG; Downs MA
    Biochemistry; 2006 Aug; 45(31):9386-92. PubMed ID: 16878973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between photoactivated rhodopsin and the C-terminal peptide of transducin alpha-subunit studied by FTIR spectroscopy.
    Nishimura S; Kandori H; Maeda A
    Biochemistry; 1998 Nov; 37(45):15816-24. PubMed ID: 9843387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insertional mutagenesis as a probe of rhodopsin's topography, stability, and activity.
    Borjigin J; Nathans J
    J Biol Chem; 1994 May; 269(20):14715-22. PubMed ID: 7514180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct observation of the pH-dependent equilibrium between metarhodopsins I and II and the pH-independent interaction of metarhodopsin II with transducin C-terminal peptide.
    Sato K; Morizumi T; Yamashita T; Shichida Y
    Biochemistry; 2010 Feb; 49(4):736-41. PubMed ID: 20030396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping of contact sites in complex formation between transducin and light-activated rhodopsin by covalent crosslinking: use of a photoactivatable reagent.
    Cai K; Itoh Y; Khorana HG
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4877-82. PubMed ID: 11320237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhodopsin mutants that bind but fail to activate transducin.
    Franke RR; König B; Sakmar TP; Khorana HG; Hofmann KP
    Science; 1990 Oct; 250(4977):123-5. PubMed ID: 2218504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.