These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 8466539)

  • 1. Kinetic assay for HIV proteinase subunit dissociation.
    Kuzmic P
    Biochem Biophys Res Commun; 1993 Mar; 191(3):998-1003. PubMed ID: 8466539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HIV-1 RT enhances the activity of a tethered dimer of HIV-1 proteinase.
    Goobar-Larsson L; Larsson PT; Debouck C; Towler EM
    Biochem Biophys Res Commun; 1996 Mar; 220(1):203-7. PubMed ID: 8602845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissociation and association of the HIV-1 protease dimer subunits: equilibria and rates.
    Darke PL; Jordan SP; Hall DL; Zugay JA; Shafer JA; Kuo LC
    Biochemistry; 1994 Jan; 33(1):98-105. PubMed ID: 8286367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization of HIV proteinase dimer by bound substrate.
    Kuzmic P; García-Echeverría C; Rich DH
    Biochem Biophys Res Commun; 1993 Jul; 194(1):301-5. PubMed ID: 8333844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic characterization of human immunodeficiency virus type 1 protease: determination of inhibitor rate constants during dynamic monomer-dimer interconversion.
    Morelock MM; Graham ET; Erdman D; Pargellis CA
    Arch Biochem Biophys; 1996 Apr; 328(2):317-23. PubMed ID: 8645010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structural stability of the HIV-1 protease.
    Todd MJ; Semo N; Freire E
    J Mol Biol; 1998 Oct; 283(2):475-88. PubMed ID: 9769219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate binding mechanism of HIV-1 protease from explicit-solvent atomistic simulations.
    Pietrucci F; Marinelli F; Carloni P; Laio A
    J Am Chem Soc; 2009 Aug; 131(33):11811-8. PubMed ID: 19645490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of interaction kinetic constants for HIV-1 protease inhibitors using optical biosensor technology.
    Markgren PO; Lindgren MT; Gertow K; Karlsson R; Hämäläinen M; Danielson UH
    Anal Biochem; 2001 Apr; 291(2):207-18. PubMed ID: 11401294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic mutational analysis of the active-site threonine of HIV-1 proteinase: rethinking the "fireman's grip" hypothesis.
    Strisovsky K; Tessmer U; Langner J; Konvalinka J; Kräusslich HG
    Protein Sci; 2000 Sep; 9(9):1631-41. PubMed ID: 11045610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of kinetic rate constants for the binding of inhibitors to HIV-1 protease and for the association and dissociation of active homodimer.
    Pargellis CA; Morelock MM; Graham ET; Kinkade P; Pav S; Lubbe K; Lamarre D; Anderson PC
    Biochemistry; 1994 Oct; 33(41):12527-34. PubMed ID: 7918476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the pH-dependencies of the association and dissociation kinetics of HIV-1 protease inhibitors.
    Gossas T; Danielson UH
    J Mol Recognit; 2003; 16(4):203-12. PubMed ID: 12898670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening of compounds interacting with HIV-1 proteinase using optical biosensor technology.
    Markgren PO; Hämäläinen M; Danielson UH
    Anal Biochem; 1998 Dec; 265(2):340-50. PubMed ID: 9882412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of a phosphotyrosine-antibody pair as a general detection method in homogeneous time-resolved fluorescence: application to human immunodeficiency viral protease.
    Cummings RT; McGovern HM; Zheng S; Park YW; Hermes JD
    Anal Biochem; 1999 Apr; 269(1):79-93. PubMed ID: 10094778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dimer disruption and monomer sequestration by alkyl tripeptides are successful strategies for inhibiting wild-type and multidrug-resistant mutated HIV-1 proteases.
    Bannwarth L; Rose T; Dufau L; Vanderesse R; Dumond J; Jamart-Grégoire B; Pannecouque C; De Clercq E; Reboud-Ravaux M
    Biochemistry; 2009 Jan; 48(2):379-87. PubMed ID: 19105629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colorimetric assay of HIV-1 proteinase suitable for high-capacity screening.
    Billich A; Winkler G
    Pept Res; 1990; 3(6):274-6. PubMed ID: 2134071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autoprocessing of HIV-1 protease is tightly coupled to protein folding.
    Louis JM; Clore GM; Gronenborn AM
    Nat Struct Biol; 1999 Sep; 6(9):868-75. PubMed ID: 10467100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of efficiently cleaved substrates for HIV-1 protease using a phage display library and use in inhibitor development.
    Beck ZQ; Hervio L; Dawson PE; Elder JH; Madison EL
    Virology; 2000 Sep; 274(2):391-401. PubMed ID: 10964781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro processing of HIV-1 nucleocapsid protein by the viral proteinase: effects of amino acid substitutions at the scissile bond in the proximal zinc finger sequence.
    Tözsér J; Shulenin S; Louis JM; Copeland TD; Oroszlan S
    Biochemistry; 2004 Apr; 43(14):4304-12. PubMed ID: 15065874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Domain flexibility in retroviral proteases: structural implications for drug resistant mutations.
    Rose RB; Craik CS; Stroud RM
    Biochemistry; 1998 Feb; 37(8):2607-21. PubMed ID: 9485411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How inaccuracies in protein structure models affect estimates of protein-ligand interactions: computational analysis of HIV-I protease inhibitor binding.
    Thorsteinsdottir HB; Schwede T; Zoete V; Meuwly M
    Proteins; 2006 Nov; 65(2):407-23. PubMed ID: 16941468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.